时间:2024-03-15 16:49:34
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇数字医学范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
2DICOM的主要内容和信息模型
2.1DICOM标准的组成、功能及其相互
关系完整的DICOM3.02000标准由15个部分构成[1],各部分是相互关联的独立文件。虽然某些部分的内容在不断补充和完善,但总体框架已经最终确定:(1)介绍与总论:全面介绍DICOM的历史、目的、结构和适用范围,并对其他部分的内容做了简介。(2)兼容性(或称遵从性):详细说明DICOM的兼容性目的和架构,同时给出了在开放互联方面对遵守该协议的设备的具体要求。(3)信息实体定义:针对用于数字化交流的实际医学影像给出一个抽象的定义,同时定义了可以使用DICOM进行通信的类别。(4)服务类的说明:对一系列的服务类进行了定义,给出用于数字化交流的操作行为的抽象定义,即定义使用DI-COM进行通信的服务的类别。(5)数据结构和语义:对数据结构及数据的编码进行说明。(6)数据字典:包括对所有DICOM数据以及所有在DICOM标准内部定义的数据的注册和认可信息。(7)信息交换:本部分定义了DI-COM命令的结构(命令结合相关数据即组成DICOM消息),同时也定义了DI-COM应用实体间的协议握手方式。(8)网络通信支持下的数据交换:这一部分说明了在网络中,DICOM如何使用TCP/IP和OSI网络传输协议。(9)点对点传输下的信息交换:说明在点对点传输下支持应用DICOM协议进行数据交换的服务器和网络上层协议。说明DICOM如何支持50针点对点消息通信的服务和协议。(10)介质储存和存储介质间交换的文件格式:它提供了一个用于不同类型医学影像间数据交换及不同物理介质相关信息交换的框架。(11)介质存储的应用方式:说明将医学影像信息存储于可移动介质的的模式。(12)介质格式和用于内部交换的物理介质:描述了如何便利医疗环境中数字影像计算机间的内部信息交换。这样的交换可应用于医学图像诊断或其他潜在的临床领域。(13)点对点传输下的打印管理:详细说明打印提供者在点对点联接的情况下支持DICOM打印管理所必须的服务和协议。(14)显示的灰度标准:详细说明灰度图像的标准显示功能,它提供了一些样例方法,说明如何调整灰度图像与显示系统。(15)安全策略方法:说明了具体应用所应遵循安全策略的兼容方式。DICOM的15个部分之间既相互独立,又互相联系,从涉及的主要内容和关联程度出发可分为3个集合[4]。数据传输协议集包括第7、8、9部分及第13部分,描述了点对点连接与网络环境下的数据传输协议,定义了网络环境下的打印管理应用。数据格式(编码、储存)集包括第5、6部分及第10、11、12部分,描述了不同条件下数据存储的标准格式。标准框架及其他包括第1、2、3、4部分、第14部分及第15部分,描述整个DI-COM标准的结构、目的和要求及图像灰度标准,并定义了安全策略。
2.2DICOM的一些重要概念
DICOM标准中定义了一些重要的概念,有关模型和协议也是以这些概念为基础来设计和制定的。(1)应用实体:应用实体是指一个具体的DICOM应用程序。(2)服务类:服务类是对现实中医学信息的传递和通信的抽象概括,它包括作用于信息对象的命令及结果。DICOM服务类提供客户/服务角色,通过网络要求DICOM服务的应用实体称为服务类使用者(SCU)。提供DICOM服务的应用实体称为服务类提供者(SCP)。(3)信息模型(informationmodel):信息模型描述了实体之间的关系。通常,用“E-R”模型定义一对多或多对多的关系。(4)消息服务元素(DICOMmessageserviceelements,DIMSE):DICOM标准定义了一系列系统网络命令。SCU/SCP利用消息服务元素在网络上进行服务,消息服务元素可以被认为是网络通信的最基本单位。(5)协议握手:应用实体间必须达成一个协议,才能相互通信。这个协议包括:①哪些服务可以操作,命令和数据如何相互交流;②传输规则,消息流(包括命令和信息对象)如何在通信过程中进行编码。
2.3DICOM的信息模型
DICOM的信息模型,DI-COM协议为外界提供服务的最高层次是服务类,每个服务类可包含多个服务对象对,信息实体定义包含了大量的相关属性。图1清晰的给出了SOP、IOD和服务类之间的关系。下面据DICOM的信息模型,讨论其中的概念。
2.3.1DICOM信息实体的概念DI-COM标准采用了信息实体关系模型E-R模型(如图2)。信息实体代表一个实际的对象、实际对象类或者DICOM内部定义的数据类如信息对象(informationob-jects);关系定义有多少其他实体与该实体有联系[5]。通过建立这个模型,DI-COM标准能够方便的描述医学实践中的事物如病人、报告、图像及它们之间的关系。由E-R模型和真实实体可以抽象出模型定义的实体,每一个实体的特征用属性来描述,例如“病人”这个实体的属性包括“病人姓名”、“病人ID号”等。DICOM称基于其模型的对象为信息对象,对应于某类图像如CT、MR;称定义它们属性的表格和模型为信息实体定义(IOD)。
2.3.2服务类/服务对象对类(serviceclass/SOPclass)服务类指能够发生的各种服务和操作,DICOM中的服务类包括验证服务类;存储服务类;病人管理服务类;查询检索服务类;打印管理类等[3]。服务/对象对类由信息实体定义和消息服务元素组一一对应组合定义。SOP类是DICOM信息传递活动的基本功能单位,它包括了限定消息服务元素组服务和信息实体属性的规则和语意,可以将它类比为ISO/OSI中的管理对象类。
3DICOM的网络通信
3.1DICOM的网络通信
DICOM为了传输医学影像和相关的信息,结合ISO/OSI和TCP/IP协议设计了自己的网络通信协议和消息交换机制[1]。图3的参考模型表明,DI-COM应用实体属于网络分层模型的应用层,它使用上层服务完成消息交换和信息传输。为了实现应用实体间的通信,相应于ISO/OSI协议模型,DICOM标准使用关联控制服务元素、表示层内核、会话层内核提供上层协议服务;相应于TCP/IP协议模型,DICOM标准定义TCP/IP上层协议提供上层协议服务。
3.2DICOM的通信方式符合DICOM标准通信模式的应用实体间的信息交换采用了客户/服务器模型。服务类使用者(SCU)和服务类提供者(SCP)分别扮演了客户/服务器的角色。SCU/SCP采用了DICOM定义的消息机制完成相关信息的交换。实际通信中,应用实体间首先需要建立协商,协商的内容包括:①哪些服务可以操作,哪些命令和数据可以相互交流;②传输语法,消息流(包括命令和信息实体)如何在通信过程中进行编码。给出了遵从DICOM标准的通信方式。第一步和第二步合称为连接协商,确定交换哪些数据以及数据如何编码交换,交换内容包括应用层上下文,其中定义了应用服务元素组、相关操作以及其他相关互操作应用实体的必要信息;表示层上下文,定义连接中的数据表示方式;应用连接信息,列出了与DIMSE协议相关的一些所需信息,包括SCP/SCU角色选择、应用层协议数据单元最大长度等。第三步建立协商,进行数据传输,应用实体间进行信息的传递,DICOM命令和DICOM文件被组装成协议数据单元,并通过协议数据单元服务传送数据。第四步撤销协商,中止应用实体间的通信,可以是连接方发出的正常释放方式或连接某一方发出的突发中止方式。
4DICOM数据结构及文件格式
数据结构是针对如何组织数据而定义的。给出了具体的数据结构,其中数据集(DataSet)定义为DICOM信息对象和服务类信息的集合,如病人IOD就可以用一个数据集合来表示;数据元素用来表示信息对象的属性如病人性别、姓名等,每一个数据元素又可以再分为标识(Tag)、数值表征(VR)、数据长度(valuelength)和数据域(valuefield),其中数值表征只存在于特定的情况下,而其余三个部分是所有数据元素共有的。DICOM文件结构提供了一种打包文件的手段,将代表SOP实例的数据集保存到DICOM文件中。图6给出了DI-COM文件格式。图中,SOP实例必须经过编码,编码的规定涉及JPEG压缩编码描述及传输语法规定等,图中的DICOMFileMetaInformation是必须的,相当于DICOM文件头,它的组成元素见表1。
5DICOM支持的影像压缩方法
虽然概念是模糊的,但这不影响人们对数字出版的热情。随着Kindle、iPad、汉王等电子阅读终端的热销,带动了电子书的热销,人们普遍接受了这一新颖的阅读模式,并对之狂热地追捧。当然,电子书只能说是数字出版的一部分,绝非全部。此外,网络游戏、数字期刊、手机报等早已为人们熟悉,并引领着数字出版的潮流。数字出版正在不断被人们丰富其内容,不断延伸着其定义。我们也不必纠结于数字出版是传统出版的延续,还是传统出版的替代,抑或其他。总之,数字出版时代即将全面到来。
国外医学领域数字出版现状
爱思唯尔(Elsevier)
爱思唯尔是一家经营科学、技术和医学信息产品及出版服务的世界一流出版集团。通过与全球的科技与医学机构的合作,每年出版1800多种期刊和2200种新书,以及一系列创新性的电子产品,如Science Direct、MD Consult、Scopus,文摘型数据库、在线参考书目和特定学科入口网站。在数字出版方面,目前爱思唯尔已与中国部分高校建立了合作关系,例如分别与上海交通大学及清华大学图书馆合作建立Science Direct中国镜像站点,提供电子期刊和电子图书的分类浏览、检索和全文阅读功能,其中对于电子图书提供按章节检索和阅读功能,检索和利用极为方便。
麦格劳-希尔(Me Graw Hill)
麦格劳-希尔专业出版包括五大块的内容:商业、医学、技术、教育和大众出版。该社每年出版大约900种图书,他们通过四种方法提高产品的数字化程度。麦格劳-希尔开发得很好的一个产品叫Access Surgery(走进外科手术,用于帮助医学院学生在线观摩最新的手术方式),它应用了搜索、互动、实时更新、内在存储这四种方法,是一种只能通过注册后才能在线使用的产品。在Access Surgery平台中,麦格劳-希尔放上了所有的图书内容和视频等,作者还会经常更新其内容。目前该社已经建成外科、内科、工程、科学等各种数据库类别,投资相当大。麦格劳-希尔对现在经营的六块业务中的三块,即搜索、电子图书和数字授权,有一个界定:搜索是让读者在网上可以找到10%的图书内容,电子图书和数字音像图书内容则是由他们进行数字化转换后提供给发行商拿去销售,数字授权是向需要在线使用该社图书的人收费。对于搜索部分,他们有三家合作伙伴,即谷歌、微软和亚马逊,这一块收入比较少,此举的目的是希望通过这些网站的参与来提高麦格劳一希尔网站的浏览量,这一方面可以提高纸质图书的销售,另一方面可以吸引更多的读者去访问麦格劳-希尔网站。
威科(Wolters Kluwer)
在纸质图书出版和销售时期,威科集团就积累了荷兰几乎所有医科类大中专院校和医院各系及科室用户的名录,这为他们顺利开展数字出版业务,提供数字化产品做好了充分准备。威科集团的数字出版理念是这样的:首要工作就是进行用户需求分析,在此基础上,通过内容编辑人员和技术操作人员,对原有内容进行医学知识的数字化整合,并不断加入新的医学内容,开发出读者真正准备“买单”的数字产品。
威科集团的数字化内容采取由自己完成和交给第三方合作伙伴完成相结合的方式。比如,电子书里的视频内容由他们自己完成,而数字化平台的制作则授权给第三方合作伙伴完成。威科集团强调要向技术公司学习,在数字化技术上,技术公司往往有比传统出版社更丰富的经验。为此,他们雇佣了全职的技术人员,以解决技术问题和提供技术支持。
开展医疗和健康板块数字出版业务后,威科集团对数字出版产品分类进行调整,以前,威科集团通常是按照学生,医生等读者群来进行产品划分,但是现在,更多的是按照客户的生命周期对产品进行分类,这能够使出版内容更全面、更好地满足客户需求。
国内医学领域数字出版现状科学出版社
科学出版社早些年推出科学e书房和科学文库,前者是离线产品,后者是在线产品。
科学e书房是一款采用DRM数字版权保护技术,以U-Key为载体,小巧便捷的移动阅读产品。其内置绿色版阅读器,使读者不用安装任何插件就可以享受近似纸质书的原版原式阅读体验。科学e书房目前已推出17个产品系列,内容包括该社出版的~大批高水平学术著作及文物考古、医学等特色内容。该产品采用传统图书外包装,便于图书馆管理;兼具翻阅、听书、目录导航、检索、笔记勾画和书签功能,是纸质书无法比拟的。
在线产品科学文库是以科学出版社优质的内容资源为基础,为高校图书馆、科研院所等机构用户精心打造的一款基于互联网的在线检索、在线阅读及下载借阅服务产品。其下设5个子库:“基础科学”“实用技术”“医学”“社会科学”和“资源环境”。用户可以根据自身需求自由组合,定制服务方式,既可以在线阅读,也可以下载借阅。此外,还能让用户在不增加成本的情况下享受更多增值服务。
人民军医出版社
2007年,人民军医出版社正式组建数字出版中心一一人民军医电子出版社,至2009年国庆出版了我国第一本真正意义上的跨媒体书,历时8年、投资近500万元。打造出了以“名医指路”品牌为特征的五大类几十个品种,其中数字跨媒体出版物5个系列155种,数据库已建5个、在建6个,网站已建8个、在建7个。
人民军医出版社的数字出版,在起步阶段,只是简单地将纸质图书同步做成电子书,以光盘的形式面世。随后,该社将纸质书和电子书又做成了具有能听、能视、能上网在线阅读、能下载到手机即同时具备纸质书、音频书、视频书、网络书和手机书功能。紧接着,该社集中攻关,将传统的纸媒图书,与经多年努力建成的总容量达4.5亿字的“中华医学资源核心数据库”群实行深度结合,使专业图书实现了随读随查、即点即答的深度阅读,拓展了阅读功能,此外,还具备了同一本书的读者群在线讨论功能。
目前,其跨媒体智能产品主要有6个大类:1.跨媒体智能图书;2.跨媒体智能网络阅读卡,3.跨媒体电子书光盘;4.复合型跨媒体智能出版物;5.大型医学数据库群;6.部队数字医学系列图书。
北京大学医学出版社
北京大学医学出版社在数字出版方面的基本发展思路是在已有资源的基础上,开发拥有自主知识产权的数字产品。其数字出版的理念主要是提供基于内容的服务。技术攻关是目前出版社独立发展数字出版的一个主要瓶颈。基于这种情况,该社首先解决专业技术人才短缺的问题,及时引进一位医学信息学博士,其一方面具有学医的背景,另一方面精于计算机技术的研究和使用,能够对医学领域数字出版的核心性技术进行开发和把关。
在具体实施方面,北京大学医学出版社目前正在集中精力开发数字出版平台一一北京大学医学出版社医学教育网,其核心内容已经成型,目前在迅速和整合信息的基础上,力求实现多种功能的融合与拓展。其设计思路是,以考试书和教材为基础,开发内容拓展型的数据库,提供在线服务,并且所提供的服务型资源将采取免费和收费相结合的方式。比如,教材的内容拓展可以是教材作者的相关教学资料或者教学培训内容,确切地说是一种针对教材本身的增值服务。
医学领域数字出版的几点思考
(一)分析现有产品,优化产品设计
各医学相关出版社,应结合自身特点,分析现有产品结构,设计纵深化产品,以满足数字时代的需要。医学图书的数字出版,或者以独创内容为资本,或者需要大量信息的优化组合,形成有特色的纵向产品,这两种发展模式应该并重。产品设计也就应该基于这两种模式。
作为编辑自身,当务之急是要提高数字出版意识。逐渐培养复合型能力,同时去影响作者,进一步带动作者的数字出版意识,这有利于将来实现数字产品的直接开发。今后一段时期,要重点做好产品储备,特别是原创性、独创性产品,努力提升横向产品线,发展优势学科纵向产品线,增强产品竞争力。作为大型出版集团,可通过兼并重组,整合资源,或者采取合作方式扩充产品线,这将在很大程度上缩短资源的积累过程,加快推进数字出版进程。
(二)处理好传统出版与数字出版的关系
麦格劳-希尔的Jill Reese这么说过:“从编辑的角度来讲,当一本书出版时间很长了,不再出版纸质书了,作者总希望拿走他们的版权,但我们不希望如此,因为我们还希望以电子图书的形式延续销售。”虽然我们不好评判数字出版是传统出版的延续,还是传统出版的替代。但我们可以确定的是,在今后很长一段时间内,传统出版与数字出版并存,两者以其各自优势共同发展。应该说,纸质出版历史悠久,但始终没有退出历史舞台,因为纸质出版有其不可替代性。人们的阅读很难离开纸质媒介,虽然其受众少了,但毕竟还是存在。数字时代的到来,按需印刷也应运而生了,很好地解决了这一现实问题。一本书绝版的概念是比较清楚的,但有了电子图书,这一定义就发生了改变。将来我们或许是先有电子书,再有纸质书;或者两者同时出现,但短期内,我们还是很难改变以纸质书出版为基础的现状。关于这一点在此不做进一步分析。
(三)加快数据库建设
数字出版的商业服务模式主要有以下几种:Kindle模式:“阅读器+内容平台”;iPad模式:“终端设备+内容平台”;Google模式:“海量资源+开放网络平台”;盛大文学模式:中国版的“内容+终端”;方正模式:数字图书B2C;汉王模式:直销、团购模式;中移动模式:“无线图书的整合发行平台”。
但无论哪种模式,内容资源是核心。就像同方知网期刊论文的发展模式一样,数据库建设对图书的数字出版同样非常重要。人民军医出版社在数据库建设方面,已建成了疾病、药品、循证医学、辅助检查、疾病研究进展、医保用药等6个子数据库。其中华医学核心资源数据库涵盖了有关疾病、药品、检查、循证、期刊杂志等五个系统知识。数据库的建设基于内容资源,在相应的平台支撑下最终实现信息服务,也是对资源的整合。
(四)离线与在线结合方式
对于这一点,可以借鉴麦格劳-希尔的做法,即经营搜索、电子图书和数字授权三块业务。搜索只是让读者在网上可以找到10%的图书内容,即在线产品,目的是用来提高其点击率,扩大传播范围,即“广告”阶段,用来吸引读者购买完整的产品。电子图书内容则是在进行数字化转换后提供给发行商拿去销售,也即离线产品的销售。数字授权是向需要在线使用该社图书的人收费。这三者的最终目的是实现销售和赢利。
关于在线产品,网站是平台,这里有很多文章可以做,一般的点击、浏览、下载,以及相应的搜索、查询等都比较为人们所熟悉。此外,我们还可以开展一些其他业务,提供更为全面的服务,如聘请相应学科的专家,一方面为我们提供专业技术支持,比如做标引,还可以定时、不定时做客访谈,融合科普、专业答疑等环节,以扩大网站影响力,提升服务品牌,聚拢潜在读者。此外,也可以与期刊杂志合作,延伸图书产品链,扩大知识涵盖面。经常更新产品内容,为“顾客”提供超值的增值服务。
(五)专业参考书与教材、教辅捆绑模式
医学专业参考书与教材、教辅的结合即提供一站式服务,就如威科集团的做法,在开展数字出版业务前,通常是按照学生、医生等读者群来进行产品划分,但是现在,更多的是按照客户的生命周期对产品进行分类。从学生入学使用数字教材(阅读器+内容平台+在线学习项目),到学生考试,通过国家执业医师、执业护士、执业药师资格考试,提供教辅产品,最后到学生毕业进入医院完成角色转变,提供专著、参考书、工具书,打包销售。在此过程中,均可实现在线和离线产品的结合。
(六)加强复合型人才培养
1995年,美国麻省理工学院教授兼媒体实验室主任尼葛庞蒂的新作《数字化生存》问世,数字化随后成为信息化时代的称谓,数字化校园、数字化医院、数字化图书馆、数字化城市成为耳熟能详的名词。随着医学和计算机科学技术的迅猛发展,形成了以数字技术为核心,信息技术、计算机技术、通信技术、电子技术、人工智能和虚拟现实等技术为基础,全方位与医学科学技术相结合的数字医学技术。现代肝胆外科学的发展与科学技术的发展及其在医学上的应用密不可分,特别是由于肝内胆管结石的复杂性及肝内外管道系统的变异性使大部分手术仍具有较大风险和较高复发率,为将手术效果达到最佳而手术风险降至最低,单纯依靠传统的技术和培训手段,恐怕难有根本改变,而数字医学技术的出现则有可能为这种突破指明方向。
1 数字医学的概念及应用
1.1 数字医学的概念
顾名思义,数字医学的“数字”就是指数字化技术,指计算机科学、信息技术已经发展到了数字化的水平和阶段;“医学”就是指计算机科学、信息技术、数字化深入渗透应用的具体领域,是经过数字化时代的革命性变化、以数字化技术武装与再造的新医学科学和新医疗技术。
从广义上来说,数字医学包括数字化医疗设备的研发与应用、医疗管理信息系统和临床信息系统的开发与实施、数字化医院的建设与管理、临床医疗技术的数字化、区域医疗协同与信息资源共享、远程医疗会诊与远程医学教育、基础医学各个分支学科的数字技术应用、疾病预防控制与公共卫生管理的数字化等等广大医学科技领域。从狭义上来说,数字医学主要是指在临床医学范围内充分运用计算机科学、数字化手段进行新的探索和创造。
1.2 数字医学的应用
1.2.1 数字医学检测技术。数字医学检测技术是依托数字化、自动化检测仪器设备,利用计算机自动控制和分析技术,对临床生化、免疫、微生物、病理生理、电生理信号、分子生物等进行检测的技术。
1.2.2 数字医学诊断技术。数字医学诊断技术主要是利用数字医疗设备为疾病的早期发现、准确诊断提供技术支持,如数字化声音诊断仪器,磁共振成像(MRI)、数字x线摄影技术(DR)和数字减影血管造影技术(DSA)等。
1.2.3 数字医学治疗技术。数字医学治疗技术是利用数字医疗设备或装置为疾病提供精确治疗的技术,如机器人辅助显微外科系统,可以精确完成心脏瓣膜修复手术和癌变组织切除手术,又如智能药物释放胶囊,可通过感应消化道内不同部分的酸碱度来确定施药部位,并根据预置程序将药物精确输送到病患部位,达到精确治疗的目的。
1.2.4 数字医学康复技术。数字医疗康复技术是综合运用现代物理运动康复和临床治疗康复方法及计算机技术与人工智能等技术,实现康复动态检测、治疗跟踪和结果评估。在康复治疗方面,利用数字技术、人工智能和虚拟现实等信息技术,广泛应用于功能测定、物理疗法、作业疗法、心理康复和临床康复,以消除或减轻病、伤、残者身心、社会功能障碍,达到和保持生理、感官、智力精神和(或)社会功能上的最佳水平,改变其生活,增强自立能力,使病、伤、残者能重返社会,提高生存质量。
2 数字医学技术在肝胆外科的应用探究
2.1 数字医学技术在肝癌外科治疗中的临床应用
随着影像学技术的发展及免疫生化等辅助检查临床广泛应用,能否运用现代医学技术对肝癌进行定位诊断,直接影响到手术的难度及肝癌肝叶、段切除的术前评估。方驰华等收集了2008年2月至7月南方医科大学珠江医院肝胆外科收治的11例原发性肝癌患者的64排螺旋CT扫描数据(其中,肝细胞癌9例。胆管细胞癌2例),并将收集的数据输入自主研发的医学图像处理系统进行程序分割、三维重建,然后把重建的三维模璎导人到FreeForm ModelingSystem进行平滑,利用系统的力反馈设备进行肝癌的手术治疗及肝动脉化疗泵放置的仿真研究。结果显示,数字医学有助于充分了解肝脏血管变异情况及肝脏管道与肝癌的空间结构关系,有助于肝癌切除的彻底性,又可最大限度地保留正常肝组织,减少术中出血.降低手术风险及并发症。
2.2 数字医学在肝胆管结石诊治中的临床应用
中图分类号:TP391.41 文献标识码:A 文章编号:1009-3044(2007)18-31717-01
A Method of Receiving Medical Digital Imaging
LIANG Yu-en,SHEN Jian-gang
(Computer Application Engineering,Zhejiang Institute Mechanical &Electrical Engineering, Hangzhou 310053,China)
Abstract:According to the Digital Imaging and Communications in Medicine(DICOM) Network Architecture, this paper proposes a method of receiving medical digital imaging based on message processing and library function (DCMTK) call, and of their components.
Key words:Medical Image;Message;Component
1 引言
医学数字影像与通信(DICOM)标准是美国放射学会和全美电子制造商协会联合制定的。该标准共分十三章,从1985年1.0版发展到现在的3.0版,已成为医学影像信息的国际通用标准。DICOM标准涵盖了有关医学数字影像的采集、通信、显示及查询等方面的信息交换协议,大大简化了医学影像信息的交换。如今,大部分医学影像设备(如CR,CT,DR,US,MRI等)出厂时都配备有标准DICOM端口,通过DICOM端口获取医学影像信息是医学应用系统的一项基本而重要的工作。本文阐述了DICOM通信原理,给出了一种实用的影像接收方法和实验结果。
2 基本原理
2.1 DICOM通信原理
DICOM网络体系结构如图1所示。最底层物理网络(同轴电缆、双绞线、集线器、分布式光纤接口等)是应用广泛的TCP/IP协议。在这之上是DICOM上层协议(Upper Layer) 。它利用OSI模型的表示层和联合控制服务元素(ACSE)对上层消息交换提供通信支持;另一方面,DICOM上层协议又是构建在TCP/IP协议之上,这赋予DICOM标准良好的兼容性和可扩展性。DICOM应用消息交换(Message Exchange)是DICOM网络中消息交换的规则。消息是由单条或多条命令组成的命令流,其后可跟数据流。消息是信息的载体,DICOM网络通过消息交换实现信息互通。医学影像应用(Medical Imaging Application)处于最顶层,是医学影像信息的使用者或提供者。
图1DICOM网络体系结构
在DICOM标准中,通信活动发生在应用实体(Application Entity)之间,而应用实体包含消息交换及部分上层协议功能。应用实体根据角色的不同分为两类,一类是服务类用户(SCU);另一类是服务提供者(SCP),这类似客户/服务器结构。SCU与SCP配对使用,相互通信过程如下:
(1)SCU向SCP发出连接请求,SCP确认并响应连接。
(2)SCU与SCP之间进行消息交换。DICOM把这些消息称为DICOM服务单元(DICMSE),例如C-Store消息(影像存储用)、C-Find消息(按属性查询用) 、N-Set消息(修改信息用)等。
(3)消息交换完成后,SCU发出连接释放请求,SCP确认并响应后释放连接,整个通信
活动结束。
步骤(1)和步骤(3)使用DICOM上层协议,步骤(2)涉及消息交换。
2.2 应用框架
在DICOM标准中,把发送影像的一方即医学影像设备称为SCU,接收影像的一方如医学影像工作站称为SCP。根据通信原理可知,实现DICOM影像的接收功能,实际上就是对SCP应用实体的实现。SCP的实现途径,一是直接根据协议文本编码,其优点是能完整实现DICOM标准,可维护性好,但工作量大;二是购买商用DICOM接口软件,经过二次开发实现所需功能,其优点是能显著缩短开发周期,不要求使用者对DICOM标准有很深了解,但要付出一定的经济代价,所购的接口软件不一定能与应用系统完全兼容,所提供的功能也不能完全满足特定的使用要求。本文提出的方法是:设计消息处理算法,DICOM消息交换和上层协议则调用的DCMTK函数库.这样既避免了大量的协议编码工作,又可灵活修改满足不同场合的使用要求,且较经济。图2是影像接收的应用框图。为了便于使用,用VC++将C-Store消息处理算法和DCMTK函数库封装在动态链接库Dcm.dll中,然后,用Borland C++ Builder 6.0写成一个VCL组件StorageSCP,调用Dcm中的函数,医学影像应用再调用组件,从而完成影像文件的接收工作。
图2应用框架
3 实现方法及结果
3.1 影像接收处理算法
由DICOM通信原理可知,要接收DICOM格式的医学影像文件需要完成三个步骤:TCP/IP通信;DICOM上层协议;C-Store消息处理。TCP/IP通信通过Windows Sockets API实现,后两项调用DCMTK库函数实现。Dcm.dll中的函数RunStroageSCP是影像接收的具体实现,算法如下:
(1)启动Windows Sockets,初始化网络。
TCP/IP初始化调用Windows Sockets API函数执行,函数原型为:
int WSAStartup(WORDwVersionRequested,LPWSADATAIpWSAData);
DICOM网络初始化调用DCMTK库函数,其原型为:
OFCondition ASC_initalizedNetwork(T_ASC_NetworkRole role,
int acceptorPort,
int timeout,
T_ASC_Network * * network);
其中,第一项参数指定应用实体所承担的角色,SCP 是接收者,所以应填NET_ACCEPTOR;第二项参数设置监听端口号。
(2)SCU连接请求处理。判断是否支持请求数据包中所列的通信条件(传输语法、编码顺序、压缩算法等),若支持就返回连接确认,否则拒绝连接。接收连接请求用如下函数完成:
OFCondition ASC_receiveAssociation(T_ASC_Network * network,
T_ASC_Association * * association,
long maxReceivePDUSize,
void * * associatePDU=NULL,
unsigned long * associatePDULength=NULL,
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
OFBool useSecureLaye=OFFalse,
DL_BLOCKOPTIONS block=DUL_BLOCK,
int timeout=0);
(3)处理C-Store消息。监听是否收到影像存储请求C-STORE-RQ消息,若收到则调用DIMSE_sotreProvider函数接收并存储影像文件。函数原型为:
OFCondition DIMSE_storeProvider(T_Assocation*assoc,
T_ASC_PresentationContextID presIdCmd,
T_DIMSE_C_StoreRQ* request,
Const char* imageFileName,
Int writeMetaheader,
DcmDataset * * imageDataSet,
DIMSE_StoreProviderCallback callback,
Void * callbackData,
T_DIMSE_BlockingMode blockMode,
Int timeout);
接收完成后向父窗口(通常是StorageSCP组件)发送自定义消息DICOM_STORAGE_RECEPTION,产生通知事件.重复执行步骤(3),直至应用结束再转步骤(4)。
(4) 关闭连接。调用的函数原型为
OFCondition ASC_dropSCPAssociation(T_ASC_Association * association);
3.2 StorageSCP组件
将接收影像的功能封装成VCL组件主要是为了便于使用。组件中利用线程技术实现对接收功能函数RunStorageSCP的调用,因此,该组件在与SCU进行的同时不影响其他任务的执行。组件主要属性、成员函数和事件如下:
属性StorageSCPOptiom Option;SCP参数
成员函数 Run();运行SCP
事件 OnReception;单幅影像接收完成
OnEndOfStudy;一组影像接收完成
成员函数 Run启动影像接收SCP,过程如下:
(1)载入Dcm.dll库,注册RLE/JPEG解码器,因为因为发送DICOM影像像素部分可能是以压缩格式存储的。
(2)创建StorageSCPThread线程。
(3)启动线程,调用Dcm.dll库中的RunStroageSCP影像接收函数,监听网络,接收影像。
(4)收到影像,触发事件函数。
成员函数ConfigStoreSCP对 StoreSCP的属性进行配置,如监听端口号、传输语法、编码顺序等,如果存入ini文件,每次组件启动时读入这些参数,并对组件进行初始化设置。
3.3 结果
StoreSCP组件作为医学影像应用的一部分,在医院放射科进行了测试,接收到计算X线成像设备(CR)发送的数字化胸片影像。图像完整清晰,无信息丢失;接收过程耗时符合要求,无明显迟滞;组件工作稳定,与应用系统兼容性好,可维护性强。测试中发现,组件因调用Dcm.dll库函数,对内存需求相应要大一些。
4 结论
本文所讨论的基于DCMTK函数库调用的DICOM影像接收方法,经医学应用证明是可行的、有效的。DICOM标准中的其他信息交换可以用类似于本文所提方法实现,可对StoreSCP进行功能扩充,或者构建新的SCU、SCP组件,并在Dcm.dll库中增加与之相应的消息处理算法。
参考文献:
[1]DICOMPS3-2004Digital Imaging and Communications in Medicine[S].
[2]John M,Tom C, Harold H. Borland C + + Builder编程指南[M].北京:电子工业出版社,1998.420-517.
【中图分类号】R73 【文献标识码】A 【文章编号】1672-3783(2012)05-0150-01
随着科学技术的发展,各领域的信息系统和信息化进程明显加快,在现代医学发展过程中多媒体技术和计算机广泛应用医学检查领域,可以说数字化信息资源和影像资料已经成为人类经济活动不可或缺的一部分。
在医学领域广泛使用医学影像数字化资料有助于医生在医学诊断和教育中的辅助教育,鉴于医学影像的独特作用,本文在分析医学影像数字化与存储过程中可能会影响医学影像质量的因素进行分析并提出优化影像质量的方法。
1 影像数字化的发展前景
随着现代科技和计算机以及多媒体等技术的发展,在当今世界发展中影像数字化是影像信息化的发展阶段,数字化影像信息在信息领域应用日益广泛,影像数字化信息已逐步应用于医疗、气象、影戏、科研、银行、城市规划、公安等众多领域。
目前人类对充满影像的现实物质世界总是不断尝试用数字化技术进行综合改造和利用,可以这样说数字化的影像信息给人类的生存空间带给无限的想象和财富。
2 影像数字化广泛应用医学发展的实践意义
医学作为一门和科学技术发展紧密相连的形态科学,对于科技的应用总是处在风口浪尖,尤其是在临床医学教学过程中,影像学和多媒体已经广泛应用与临床教学,而且目前医学影像涉及的门类和种类呈现出越来越多的特点,者从另外一个侧面也要求医学对于疾病研究和医学教育的不断向前推进,通常说来医学数字化影像包括:图形、标本、显微图像、内镜影像、超声影像(B超、彩超)、X线影像(传统X线影像、X线数字影像)、CT影像、核磁影像、造影影像等几大部分。
目前,在医学领域对于影响数字化的重视程度都无比高涨,包括医院系统、医学教学系统以及相关的附属科研机构都十分重视医学影像数字化问题。但不可否认的是目前无论是医院系统还是教学系统,医学影像的数字化均存在很大问题: (1)查找相关的影像信息不方便。教学中老师需要依赖医学影像,但教师寻找相关的影像信息却十分困难。即便是找到也存在清晰度差和影像质量不高等特点而用不成。(2)课堂使用的数字影像资料不方便。即便是找到相关的影像资料,因为其存储的载体不同导致使用不方便,无法在课堂正常使用。 (3)教师在课堂上使用的医学影像资料学生很难占有并时常复习。(4)另外目前我国的医学教学领域多媒体教学难以发挥应有作用。
3 优化医学影像数字化采集相关方法探究
目前,在数字化医学影像采集方面,人们的重视程度和意识不够,从而造成医学影像利用的效率和质量不高。根本的问题在于影像采集的质量和后期存储的格式两者之间的关系没有处理好。
医学领域影像采集的渠道众多,医学诊断影像从用途上大致可以分为X线影像,CT影像,核磁共振影像,数字减影(血管造影)影像,内窥镜、B超影像,显微影像等和非医学诊断影像等。很多医学影像即可以用扫描仪扫描,也可以用数字相机拍摄,有的还可以视频捕捉或者直接从相应的成像设备中获取。医学影像数字化采集可选择的途径有多种,不同途径获得影像的质量也有差别,本着方便使用和快捷获取的原则合理有效地选择影像资料的获取途径和手段,优化医学影像的数字化采集。另外,如果医学影像采集后以最佳的影像质量存储,那么医学影像的数据量就会极大,虽然在数据采集的过程中能够保证医学影像的色彩和清晰度的问题,能够使得影像的丰富和细腻程度达到教学要求,但不可否认的是影像文件占用的空间太大导致影像的处理比较困难。有些同志认为在采集医学图像的时候使用压缩格式可以保证医学图像的处理速度问题,但笔者在工作实践中发现经过压缩过的图像普遍存影像信息减少,影像清晰度减低和层次和细节受到降低的问题,因此在这种情况下采集的医学影像资料的利用价值就大打折扣。采集的数字化医学影像的最终目的是为了使用为目的,现在通常情况下总是以应用为最主要的目的,通常情况下比如医生的快速诊断和医学影像的安全管理、方便的传输、快捷地检索等,可以在计算机和网络上应用同时还可以满足打印输出的要求,同时还可以根据需要随时转换成视频在视频中播放。同时在现有技术水平基础上,采集医学影像信息的应用模式不同对影像采集的质量影响也不太一样。总之做到具体应用场合最大化保证医学影像的质量是最重要的。保证医学影像采集质量就是为了实现数字影像的存贮、传输、再现、利用的最优化,实现影像在不同情况和条件下的影像质量和用途的最佳化,满足个性化需要和特殊需要,弄清楚影像存储的色彩模式、文件存储的格式和影像质量、用途的关系是十分必要和重要的。因为恰当的色彩模式和文件存储格式直接关系到医学影像自身的质量以及应用时的合理性、经济性问题。选择合适的色彩模式影像色彩能否逼真地还原直接影响到医学影像的真实性和影像的质量。
4 结束语
在数字化处理传统医学影像的过程中常常因为处理后影像质量不好降低影像的实用价值,有鉴于此,必须结合医学影像本身所具有特殊性,同时结合医学影像数字化的广泛用途,提高优化医学影像的质量。
目前国内医学成像领域存在着传统设备与现代高端数字设备并存使用的情况,而且就实际情况而言,传统医疗成像设备仍占主要,并且在一个相当长的时期之内还要继续使用,因此在现有基础之上优化医学影像的采集和存储质量,在现有条件下结合能够使用各种设备将传统医学影像数字化,在原有基础上最大限度保证影像的质量并且进行改善,并且伴随着国际关于医学成像设备不断完善的浪潮下,完善和规范我国的医学影响的存储数据格式,并逐渐进行统一和标准化,使目前医学影像的数字化采集和存储以及后续传输和使用更加规范,更加直接和简单,而且保证医学影像的质量。
参考文献
[1] 张云熙.迎接图像信息社会的来临[J].通讯产品世界,1999
[2] 朱学芳,智文广.计算机图像处理导论[M[.北京:科学技术文献出版社,2002
[3] 阮秋琦.数字图像处理学[M].北京:电子工业出版社,2001
[4] 容观澳.计算机图像处理[M].北京:清华大学出版社,2000
[5] 崔屹.数字图像处理技术与应用[M].北京:电子工业出版社,1999
新媒体,亦可称新媒介,是指不同于以往传统纸质媒体而以新型数字媒体为主的形态。新兴媒体的大环境中,由于碎片化阅读和数字化阅读的盛行,导致各种信息资料易破易碎且不易保存,因此提出对新媒体环境中各类信息档案的保护保存。本文今着重以医学科技类档案为例,来展开对新媒体环境中数字化保护的论述和议评,企图能对新媒体学科和医学科技类学科的发展和创新都有一定效用。
一、新媒体概念新解
自始至终,在学术领域内,专家学者们对新媒体概念都没有形成统一的定论。新媒体(New-Media)一词最早见于1967年美国P.戈尔德马克(P.Goldmark)的一份商品研究开发计划。随后,由于商品营销的需要,此概念便在全世界范围内迅速传播开来。而联合国教科文组织则简单地定义为新媒体就是网络媒体,包括计算机网络在内的诸多通用通讯工具。埃梅里在《新媒体》一书中提到,新媒体的“新”在于它能让人们或人与机器之间实现前所未有的通信,并且与其他所有通信根本不相同,着重体现在快速。清华大学熊澄宇教授则认为,新媒体是一个相对的概念,是建立在计算机信息处理技术和互联网基础之上的媒体形态,发展创新了报纸、电视、电台等传统媒体的功能,且更多运用在手机、电脑、客户终端、微信公众号之中。既然至今对“新媒体”仍没有一个统一的概念界定,因此笔者提出对“新媒体”概念展开新解,希望能对学术新闻有所帮助。同时,在此解出“新媒体”概念有“三新”,也企图对新媒体环境中医学科技类档案的保护保存能有借鉴作用。1.新在时代。20世纪90年代,中国全面接入互联网,新媒体也因此应势而生,可说新媒体确实赶上了一个好时代,然而这却也是机遇跟挑战并存的时代。具体体现在,新时代下各种新媒体、新观念过于繁多,尤其是西方资本主义观念的大量渗入,更会导致我国传统观念和社会主义正统思想受到冲击,思想观念的不统一在某种程度上会导致社会秩序的混乱和不稳定,这是新媒体时代的缺陷。但是另一方面,正是由于新媒体时代下各种思潮的碰撞和激荡,这才有了如今中国较为开放、较为先进的局面,也可以说正是因为有了新媒体对各种先进思政理论的大量引入和大量报道,才推进了如今中国改革下的社会主义市场经济的发展。2.新在设备。新媒体不同于报刊、广播、电视等传统意义上的媒体,更多则是指以数字报纸、客户终端、手机网络等新技术设备为主的媒体形态。新兴的媒体设备具有以下几大优势:其一,方便快捷。运用手机和电脑发送和传递信息比运用传统的报刊、广播等工具要方便得多。传统媒体时代里,从印刷报纸、搭建广播并有专人传递再到信息收入,这期间不知要花费多少人力物力财力,甚至几经周转会有信息断层和信息连接不通畅的情况出现。而如果运用手机、电脑这些先进设备和移动网络,任何信息都能及时迅速地传递到对方手中,人们相互之间进行沟通很是方便。其二,廉价高效。传统时代下,人们阅读报纸、观看电视,都是需要花费一定的代价的,尤其购买一份报纸更是如此,且收获到的信息大多也已经滞时和落后,而新媒体环境中,由于移动网络和数字报纸的出现,人们阅读刊物廉价了许多甚至全部免费,无须再去花费财力购买昂贵的杂志,且数字化阅读高效快捷,智能化搜索和智能化阅读更是极其方便了人们及时高效获取信息。其三,海量持久。新媒体网络中的任何信息,包括各种视频、图片、文件、文字,只要是在移动网络上以后,便能长久存在和长久查看,且移动网络上所能承载的信息也可能是无限量大,网络上各种信息的丰富多样和种类繁多是无法比拟的。新媒体环境中最重要还是新在各种技术设备上,数字网络、电脑手机、客户终端、微信公众号的普及运用是社会大趋势。3.新在公众。不像传统媒体中的客户公众必须具有一定的阶级地位和文化水平,新媒体环境中的客户公众只要拥有能上网的电脑,会一些最基本的操作,懂一些基本的文化知识,就可以在网络上信息。新媒体环境中的公众大多属90后或00后的社会青年,他们大多思维比较活跃,喜欢故意发表各种奇奇怪怪的言词言论和网络流行语,他们个性张扬、喜欢创新。但是这些网络青年也大多具有懒惰、敏感、过于感性等缺陷存在。新媒体环境中的公众主要定位在年轻的青年群体中,着重关注并研究这类社会人群,具有很强的现实性和前瞻性。
二、数字化保护医学科技类档案的措施
医学科技档案是指医院在科研活动中形成的具有一定归档保存价值的文字资料、影像、图表以及各类电子文件等原始记录。概括起来讲主要包括五大类:国内外公开发表的论文和著作;医院开展科研活动的相关原始实验资料;基金课题相关资料;技术转让资料、专利证明等;其他通过鉴定的科研成果资料等。新媒体环境中,提出对医学科技类档案进行数字化保护,既是顺应社会时代的大趋势,也有利于增强人们对医学科技类档案的保护意识,进而将有利于医学界理论技术的创新和传承。新解新媒体之概念,得出数字化保护医学科技类档案有以下措施:1.适应新时代要求,健全医学科技类档案的管理机制。任何举措的推行都离不开完善的管理体制,只有健全机制的约束才能规范相关人员的行为,才能确保举措的顺利实施,数字化保护医学科技档案同样需要有完善管理机制的指引。但是在制定相关管理机制的过程中,必须要适应新媒体时代的变化要求,即管理机制必须要在社会主义核心价值观念和社会主义市场经济的框架之内展开运行,不能走其他偏颇或者西方狭隘思想的道路。同时,健全的管理机制中也应当要有明确相关的责任人,把具体的分工详细划分到每个工作人员。责任人的作用不可忽视,明确的责任分工是促使管理机制透明高效的关键。2.运用新设备技术,推进医学科技档案的数字化保护。数字化保护医学科技类档案,自然离不开各项新媒体设备技术。具体来说,就是医院要健全电子政务网络系统,将现有的网络进行完善,有目标、有计划地完善医院综合办公系统,建设综合查询和网络办公系统,提高医院科技档案数字化保护和管理体系。医学科技档案数字化保护及管理应该成为医院的重要管理工作之一,在制定信息网络建设的规划的同时,要将档案数字化保护工程作为重点工作来抓好。3.摒弃新公众缺陷,提高医学科技档案管理人员的综合素质。新媒体环境中的公众,虽说个性张扬,具备一定的创新精神,但是仍不能担负起数字化保护医学科技档案的责任和使命。作为新媒体环境中新兴的医学科技档案管理人员,必须要有极高的综合素质。具体体现在:其一,不张扬过胜;其二,医学科技档案人员要调整心态,更新观念。
三、结束语
新媒体环境中,不仅需要对医学科技档案进行数字化保护,对于其他类档案信息,例如:学生学籍档案、党员干部档案、国家历史档案等,都需要进行数字化保护,这是社会现代化信息化发展的大趋势。对档案进行数字化已经成为一种共识,但是数字化管理和保护不是一蹴而就的事情。医院应该从技术以及信息资源建设、社会环境等方面不断完善科技档案的数字化建设,更好地实现科技档案资源的共享,使之为医院的发展提供有力的保障才是。
参考文献:
90% 西班牙心脏病学专家指出,心血管疾病的高危人群对这种疾病的控制权掌握在自己手中,90%的风险都在人们可以改变的范畴内。数据显示:心肌梗死患者的死亡数量超过癌症,已成为头号健康杀手,是交通事故致死人数的65倍。
美国加利福尼亚大学伯克利分校的一项研究显示,睡眠与身体质量指数(BMI)息息相关,青少年如果平均每晚少睡1个小时,他们的BMI就会在5年间增长2.1。而且体育锻炼和使用各种移动设备的时间等因素无助于抑制指数的增长。(青少年平时建议睡眠时间每天9个小时。)
德国糖尿病研究中心的Schulze教授及其团队进行了一项研究,调查哺乳与产妇患2型糖尿病风险之间的关系。研究发现,受试者哺乳时间每增加6个月,其发生糖尿病的风险比为0.80,哺乳时间与糖尿病风险之间的相关性减弱。该研究提示,延长哺乳时间或许可降低糖尿病风险。
澳洲迪肯大学研究人员分析了多年积累下来的美国国家健康检查和营养调研数据,发现61%的受调查者有抑郁症状;他们同时表示,在过去的1年里牙齿有疼痛不适感,其中又有超过57.4%的人自认为牙齿健康状况不好。结论是:牙齿好坏与抑郁症存在关联,牙齿越差,心情越不好。
美国威斯康星大学医学和公共卫生学院的研究者发现,经常锻炼有助于保护视力。研究人员选取了近5000名年龄在43~84岁的成年人,对他们进行了为期20年的追踪随访调查。结果显示,在控制了年龄因素之后,与久坐的人相比,每周锻炼三次或以上的人,视觉受损的可能性下降了58%。
德国一项旨在研究自身免疫性甲状腺炎(AIT)对卒中的影响的研究发现,AIT患者中卒中风险轻度增高,且在AIT诊断1年后影响最为显著。
一、数字化技术在医学档案应用过程中存在的问题
(一)数字化档案管理的制度缺失
医学档案是伴随着医疗体系的发展而来的,用于记录患者基本信息、治疗过程、治疗结果等信息,既便于患者后期查询又利于医学研究。然而,在传统管理体制以及管理技术的限制下,医学档案管理工作不仅缺乏管理科学的管理制度而且缺乏严谨的管理态度,部分小型医疗结构甚至无专门的档案管理组织,流于形式。管理体制与管理制度的缺乏所导致的影响是深远的,在该管理环境下直接制约了数字化技术在医学档案管理中的运用,信息化建设阻碍重重。同时,部分医院单位信息化建设上停滞不前,现有档案管理设备落后且陈旧,跟不上时代需求而且缺乏现代化设备的必要投入,直接制约了数字化技术在医学档案管理中的运用。
(二)医学档案数字化管理的意识不足
由于传统管理模式以及理念的影响,诸多医学单位管理者对于档案管理工作缺乏足够的重视度,进而导致对数字化技术的引进和运用缺乏深入了解,重视度自然偏低,甚至未曾听说过。此现象不均阻碍了数字化技术在医疗体系中的运用而且阻碍了医学改革的发展进程,尤其是在市场经济环境下,医院为了追求利润而弱化了无法获利环节的投入和降低了重视度,医学档案管理工作就位列其中,备受冷遇,由此影响到了现代科技在医学档案管理工作的运用。同时,部分医院或单位因经费的制约而缩减了档案管理工作经费与人员的配备,数字化技术的运用更无从谈及。
(三)专业化的医学档案管理者较为缺乏
专业数字化医学档案管理人才的缺乏,导致了档案管理部门在开展数字化建设时困难重重,不能及时有效地开展数字化建设的规划以及实施。在这样的情况下,即便是数字化的医学档案管理平台能够搭建好,但是因工作人员综合素质的不足,缺乏相应的操作技能不仅降低了工作效率而且可能导致数据出错,影响到整个管理工作的有序进开展。此外,在档案管理工作中存在非专业人员兼职现象,虽然节省了管理成本但却极大的削弱了其工作的积极性,难以确保医学档案管理工作的成效,更不利于数字化技术的运用和推广。
二、数字化技术在医学档案应用中的对策
(一)将传统档案管理与数字化融为一体
数字化技术在医院档案管理中的应用是随着传统档案管理的发展而逐步深化的,传统的医院档案管理系统是数字化技术应用于医院档案管理的基础。数字化的档案管理可以有效提升传统档案管理的效率,节省大量的人力和物力[ 1 ]。当然,数字化档案管理需建立传统档案管理基础之上的,在运用传统档案管理优秀管理理念与程序的前提下融入数字化技术,逐步实现两者的结合。
首先,转变管理理念,深化对数字化技术的认识。尤其在当今医患关系紧张的局势下,做好数字化档案管理工作在一定程度上为纠纷的处理保留了原始证据。其次,建设数字化档案管理部分或设置专业人员,将档案管理工作的重心由传统档案管理模式逐步向数字化档案管理倾斜,实现有序过渡并最终实现数字化技术在医学档案管理中的全面运用。
(二)强化人才培养促进人机结合
数字化技术与医学档案管理“联姻”的关键在于人,人才的培养是促进数字化技术在医学档案管理中发挥作用的关键因素,更是推动数字化技术在医学管理改革中的催化剂,为此应着重强化人才的建设。
首先,注重综合性人才的培养与建设,医学人才不仅仅要具备专业的医学知识而应兼顾信息技术以及计算机技术的培养;其次,引进专业化的信息化或计算机技术人才,从事专业化的档案管理工作。改变以往非专业人士管理或兼职的现象,从根本上提升档案管理工作的性质与效果;其三,对现有档案管理工作进行专业化培训,培训内容应多样化。例如,档案管理工作的重要性认识、信息化技术的基本知识、数字化技术的基本知识与相关软件或设别的操作等,以最大程度上的促进人机结合,提升档案管理工程在科学性与现代化。
(三)加强数字化技术所需硬件设施施的投入
对于加强医学档案的数字化管理要以完善硬件设施为基础和前提,硬件设施的建设与完善需要具有一定的预见比以及可靠性,在医院发展过程之中要循序渐进地建立网络系统,为逐步发展起来的档案数字化建设提供足够的发展空间[ 2 ]。
同时,可充分运用数据库技术将现有的数字化数据纸质化信息存入其中,形成完备的信息储存管理,既便于随时查阅与开展研究又可以避免纸质化存储带来的负面问题。此类数据还可以通过医学内部的局域网实现实时查阅与共享,同理还可以与其他单位之间进行信息的共享,为数字化技术的运用提供了基础。
(四)整合医学档案数字化的原始资源
随着科技的发展,医学档案管理工作的发展趋势是运用数字化技术,整合现有资源并强化资源的高效管理,具体而言医学档案的数字化管理要立足两个方面:其一,是对于医院馆藏的数字化的管理;其二,是对于社会化资源的馆藏化的管理。
对医学馆藏的数字化管理要注重以下几点内容:
首先,要充分结合各个医学馆藏的研究方向与特点,建立相应的数据库,将现有的信息纳入其中以实现集中化管理[ 3 ];
其次,将现有纸质化病例以及诊疗报告,包括影响资料等通过数字化技术处理,存入数据库,便于查询与研究以及与其他馆藏之间进行共享;
其三,制定用户管理制度,根据馆藏使用人员的特性设定用户权限,可分为查阅、下载、浏览等不同权限,提升用户管理的科学性进而最大程度上的保障数据的安全性;
【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2014)11-0080-01
一 教学实践
1.正常人体结构CT原始资料的获取
根据不同课时教学内容的需要,选取一名健康志愿者对所涉及的部位通过64排螺旋CT进行精细扫描,扫描参数:像素0.301mm,层厚0.625mm,将扫描数据以DICOM3.0格式刻盘保存。
2.疾病结构CT原始资料的获取
根据不同课时教学内容的需要,选取相关疾病患者1例,对病变部位进行CT扫描,扫描参数同上,数据同样刻盘保存。
3.三维数字模型的重建
应用MIMICS10.0软件读取DICOM3.0格式的CT扫描数据,根据不同的需求分别建立正常人体结构以及疾病结构的三维数字模型,将所有模型进行不同命名后保存在计算机内或移动硬盘上。
4.教学过程的实施
采取小班教学,地点选在PBL教学区,首先在MIMICS10.0软件平台上读取所学课时内容的正常人体结构的三维数字模型,以立体的、全方位的、各角度、各层面任意切割以及各组织结构任意分割和组装的方式,进行非常直观的解剖学学习,在教师进行演示教学后,学生们可以利用电脑主机进行深入的解剖观测和解剖操作的学习。然后调出疾病结构模型,学习不同疾病的发病机理、诊断以及治疗。利用MIMICS10.0软件的复位功能在电脑内模拟骨折、脱位等疾病的复位方法,并利用该软件的固定功能模拟钢板、髓内钉等内固定手术操作以及利用该软件的三维测量功能对不同结构进行测量以明确内固定器材的尺寸。
5.学生模拟练习
教师对疾病的演示讲解结束后,学生借助MIMICS10.0软件平台进行模拟操作练习,进一步增强对手法复位以及手术操作的立体感,为进行相关临床操作打下坚实的基础。
二 引进数字医学教学的优势
1.将基础和临床教学进行有机整合
以前的教学往往是先学基础后学临床,以运动系统疾病为例,其基础课程主要是解剖学、X线、CT等放射诊断学,在以往的教学中,基础课程与临床课程往往是脱节的,学生们在学习临床课程时,大多数学生已经忘记了先期所学的那些解剖和放射学知识,授课老师不得不再次用较多的时间对解剖和放射学知识进行复习,从而浪费了很多时间。课程整合是医学教育改革的一个趋势,整合是评估医学教育计划创新程度的一个关键标准。通过引进数字医学教学,使解剖学、放射学以及临床诊断、治疗一脉相承、有机整合,使学生能在较短的时间内进行循序渐进且全面的学习,极大地提高学习效率。
2.使教学更加客观和形象
以往的教学,不论是解剖、放射学诊断还是临床操作多借助于二维平面图片,这就需要学习者有充分的空间思维能力,而对于没有任何临床经历的学生来说,确实存在理解、思维上的困难,学习效果较差。引入数字医学后,从解剖、放射学诊断到临床手术操作都在三维空间下进行,非常直观,可以进行任意角度、任何平面的切割以及不同组织结构随意的分离和组装,而且可以通过设置组织器官的透明化来观察病灶内部结构,非常客观和形象,使学习者非常直观地进行学习,提高了学习效果。教学过程的重心应该在学,如何使学生学起来轻松、学起来有兴趣才是教学的宗旨,通过引进数字医学教学可有效地解决教学中学的问题。
3.极大的节约教学资源
以往的解剖学教学,为提高教学效果,尸体解剖教学非常重要。由于受到尸体标本来源的受限,教学资源极其短缺。临床操作学习更是如此,受目前医疗环境不好的影响,没有任何操作培训的学生到临床后只能以参观者的角色进行学习,对培养学生的操作动手能力极为不利。通过引进数字医学教学后,一旦模型重建成功,一套数字医学模型可以被复制,而且可以被反复使用而不用担心被破坏,所有学生都有机会进行反复多次的操作练习,从而极大地解决了教学资源短缺的问题。虽然只是模拟,且只在电脑上操作,但只要学生多进行模拟操作,时间一长,学生就会对组织结构、内固定物安放等有很深的形象认识,一旦接触临床其上手很快。
数字医学涉及到人体每一个系统,由于运动系统在三维重建上相对比较容易,而且原始资料的获取相对比较简单,使得数字医学在运动系统的应用较早而且较有成效。作为运动模块的教学老师,要在掌握了一定的数字医学知识后,应用数字医学知识进行教学,这样才能实现卓越医师培养计划的教学要求。相信随着数字医学的进一步发展和教学经验的进一步积累,数字医学在人体其他模块,尤其是以外科为主的模块的教学中将发挥相应的作用。
参考文献
[1]钟世镇.数字人和数字解剖学[M].济南:山东科学技术出版社,2004:1~21
2ULP提供的服务
ULP提供的4种服务及对应的服务对象.A-ASSOCIATE服务用来在对等应用实体间建立关联,它是一个证实.在关联建立阶段,双方需要交换包括应用上下文、表示上下文、DIMSE特定的用户信息等初始化信息,因此建立关联也是个协商过程.一旦关联建立,则双方应用实体对本次关联中的应用层服务项目的范围及相关的参数就有了约定,这样就保证了后继DIMSE消息交互的顺利进行.A-RELEASE服务用来在对等的应用实体间正常有序地结束关联,它也是一个证实.使用A-RELEASE结束关联不会造成任何应用层数据的丢失,因此是一种优雅的中止方式.A-ABORT服务用来异常中止应用实体关联,它是一个非证实.A-ABORT拥有3个服务使用者,这意味着应用实体、DIMSE或ULP这3个层次中的任何实体一旦遇到异常情况都可利用A-ABORT强行中止应用关联,本服务可能造成各层待传数据与暂存数据的丢失.P-DATA-TF服务用来向对等应用实体传送DIMSE命令流与数据流,它是一个非证实.P-DATA-TF服务是应用实体获取网络传输服务的逻辑接口,应用实体的某一方一旦使用该服务把DIMSE消息流传送出去,就可以认为对方应用实体能准确无误地接收到此消息.3ULP的协议数据单元(PDU)及其实现ULP一共提供了7个PDU来实现上述4种服务.DICOM的所有通信最终就是依靠上述7个PDU来完成的[4].PDU承担实现ULP的任务,而PDU本身必须依赖下层网络提供的服务接口.虽然DICOM标准提供了基于OSI与TCP/IP两种可能的实现方式,实际中,一般都采用基于TCP/IP的4层模式,因此首先必须充分了解TCP/IP提供的网络服务和获取这些服务的调用接口.在此基础上,本文给出了有代表性的PDU实现实例.
3.1TCP/IP协议及套接字接口
TCP/IP是应用最广泛的传输层/网络层协议,也是事实上的工业标准[5].TCP是一种面向连接的可靠协议.在复杂的互联网上,它完全屏蔽了任意两个端点间进行通信的细节,提供了端对端有序、无差错流式的数据传输功能.获取TCP服务的编程接口是套接字.套接字锁定了网络层地址(IP地址)与传输层地址(端口号),它是对一个通信端点的抽象[6].ULP所有的PDU数据交互最终需要借套接字来实现.
3.2PDU实现实例
ULP中使用最频繁的PDU是P-DATA-TF,所有的DIMSE消息都是通过它进行传送和接收,P-DATA-TFPDU的最大长度必须符合应用关联建立时双方的协商结果.如图3所示,每一个PDU封装了若干个表示数据值(PDV),每一个PDV由一个字节的表示上下文ID、一个字节的消息控制头与一个DIMSE命令或数据片段组成.表示上下文ID在关联建立协商时确认,因此只在某次特定的应用关联内有效,它指示本PDV所载DIMSE消息所属的服务类.控制头用来指示本PDV是命令还是数据,以及是否是本类型PDV(命令或数据)中的最后一个.一个DIMSE消息包可能被分为若干片段,每个P-DATA-TFPDU可以携带一个或若干个片段(受PDU最大长度值限制).表示上下文ID与消息控制头保证了对方ULP实体能准确无误地重组DIMSE消息包.
4ULP的实现
ULP借助于ULP的PDU来实现,而PDU依靠套接字来完成实际的网络数据传输,这只是静态的描述.在一定的上下文环境下,ULP实现还包括对PDU的解释以及在解释基础上PDU之间的交互,所有的服务功能通过解释与交互体现出来.ULP负责把PDU中的连续字节流解释成为有意义的协议控制信息,并分离出DIMSE流(如果存在的话).以处理应用关联请求为例,该服务涉及的PDU中没有DIMSE负载,实际上只有P-DATA-TFPDU中才包含ULP不能解释的DIMSE流,因此需要向DIMSE层递交.显然,A-RELEASE与A-ABORT的实现要比A-ASSOCIATE简单,因为它们本层的控制信息很少,且不需要向邻接上层递交数据.如图4所示,一旦请求DICOM服务的客户端完成TCP连接,它立即发送A-ASSOCIATE-RQPDU,该PDU是一个有序的数据流块,按照ULP规定存放着各种协商数据,服务器端从该PDU数据流中取出相关内容获得语义解释,就可决定是否接受本次关联请求以及本次关联中的服务内容.表示上下文表征应用层协议中定义的抽象语法和能满足抽象语法的传输语法之间的联系,每个抽象语法和能对它进行编码的传输语法组合起来就构成一个表示上下文.用户信息包括最大PDU长度、实现类UID、实现版本名称等.
5ULP实现的优化