时间:2022-01-28 11:02:42
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇概率统计论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
二、弱化统计方法计算过程的阐述,加强方法背景、用途的介绍,增强课程的应用价值
教师对工科大学学生的授课要将概率统计定位于工具,在讲授的过程中应立足于应用,对于各种统计方法的教学,要努力帮助学生了解方法的背景、条件和用途,即重点解决有何用,如何用,何时用的问题。方法的实现则交给现有的统计软件。每一种方法都可从实例中引出,从简单到复杂,同时尽可能地联系生产实际,贴近学生专业学习,课程的应用性加强了,通过自己的实际操作,解决身边的统计问题的,既锻炼学生统计建模的能力,又能激起学生浓厚的学习兴趣。
2教学过程中存在的问题
第一,计量经济学是以经济学理论为理论基础,以现实观测数据和实验数据为支撑,利用数学、概率统计等方法,依据计算机技术,来研究分析伴有随机因素效应的现象的定量关系和发展变化的统计规律的一门学科。计量经济学作为西方经济学的新的一个分支,西方经济学为其发展奠定了的理论基础,西方经济学中关于对经济变量之间质的分析是计量经济学进行定量研究的前提。数学与概率统计是计量经济分析、理论研究的主要工具,计量经济学在的建立与选择时,很多地方需要用到数学的方法和技巧。但在实际教学中,仅注重计量经济学模型的求解及检验方法,而忽略模型建立的经济学基础;仅仅强调模型的设定是正确的,但是却没有教会学生如何去检验模型是否正确;同时,也未将经济学基础考虑进来。第二,目前的教学过于强调“重思想、重方法”,把必要的数学过程与技巧只是作为解决计量经济学基本思想的工具,不过分强调,而是着重于基本思想和解决问题思路的分析。第三,在教学时,并没有将计量经济学方法应用到实际问题中进行实践。在上机课上,让学生自己操作Eviews软件对课本习题进行操作练习,并写实验报告,训练了学生的动手能力,但是学生并没有机会将所学到的知识运用到实际的经济问题中,计量经济学的教学理论在一定程度上与实践相脱节,相当一部分学生在使用计量经济学方法处理经济问题时,感到迷茫,也不知运用相关软件来完成计量经济学的运算,即使能够运用软件,却不知该怎样解释与分析模型的结果。
3计量经济学教学措施
通过教学改革提高教学质量,进一步使学生达到掌握经典的计量经济学模型理论和方法,了解计量经济学理论与方法的新发展;要求学生能够应用简单的计量经济学模型和方法,对实现经济数量关系进行实证分析;为继续学习高级计量经济理论、方法打下基础。
3.1理论与实验教学的互动发展
提升教学效果加强理论教学,同时开展创新实验教学,理论教学与实验教学的互动、协调发展。
3.2以"任务"驱动教学
课程理论知识、使用专用软件、提出研究问题、解决研究问题为计量经济学课程教学的四大任务。带动学生的自主创新及动手能力,适时的给学生布置任务,提高学生学习的积极性。
3.3划分和挑选教学内容
对计量经济学教学内容的层次划分进行反复讨论和界定,形成分层次的课程教学体系。
二、对课程教学改革中出现的问题的改进
在教学过程中为了更好地解决信息化背景下“概率论与数理统计”课程教学与培养学生创新实践能力和应用能力的关系,实现教学内容与教学模式的改革与学生应用能力培养的统一。下面从三个方面说明进一步的改进措施。
(一)进一步加强“概率论与数理统计”课程的分类
教学与课堂教学改革结合学校学生的实际情况,进一步加强理、工、经管、生命、社会工作等不同专业的分类教学,针对不同专业采取不同学时、内容有所侧重的分类教学模式,加强统计方法的应用教学,对不同专业的分类教学进一步进行探讨。
(二)进一步更新、优化教学内容,完善“概率论与数理统计”
精品课网站的建设定期对全校各专业进行调研,了解各专业对“概率论与数理统计”课程教学的反馈与需求,及时修订、调整和更新课程的教学内容,优化课程体系。目前长春理工大学的“概率论与数理统计”是省级精品课,为了更好地顺应信息化大环境的需求,学校会进一步完善本课程网站的建设,使得学生在自主学习的过程中更加便捷。
(三)增加课程设计、计算机实践环节
鼓励学生申报创新实验计划项目,参加数学建模竞赛在教学过程中增加课程设计、计算机实践环节,结合较多的应用实例,留一些开放性的案例,要求学生做案例研究,写出合格的研究报告,训练学生的实践能力。鼓励学生申报创新实验计划项目,参加数学建模竞赛。通过创新实验计划项目、数学建模竞赛等活动,提供一个学生、教师课后交流的平台,吸纳部分本科生参与到教师的科研活动当中,最大限度的挖掘学生潜在的能力。“概率论与数理统计”教学,不再是单一的数学理论与方法,而是通过教学,在传授相关数学知识和方法的同时,使学生更多地领悟该门课程的精神实质和思想方法,促使学生自觉地接受数学文化的熏陶,从而提高学生的创新思维能力。
2设计趣味案例,激发学生学习兴趣2015年1月5日
随着互联网的迅猛发展、电脑的普及、各种游戏软件的开发,很多大学生喜欢在网上玩游戏。教师可以抓住大学生爱玩游戏这一特点,况且概率论的起源就来源于赌博游戏,教师可以在讲授知识时,由一个游戏出发,循循诱导学生从兴趣中学到知识,再应用到生活中去。例如,在讲解期望定义时,可以设计这样的一个游戏案例:假设手中有两枚硬币,一枚是正常的硬币,一枚是包装好的双面相同的硬币(即要么都是正面,要么都是反面,在抛之后才可以拆开看属于哪种)。现在让学生拿着这两枚硬币共抛10次,一次只能抛一枚,抛到正面就可以获利1元钱,反面没有获利,问学生选择怎样一种抛掷组合,才能使预期收益最大?教师留给学生思考的时间,然后随机抽一位同学回答,并解释其理由。大部分学生选择先抛后面那枚硬币,如果发现两面都是正面,那么后面9次都抛这枚,如果是反面,那后面9次都抛前面那枚硬币。这种抛掷组合确实是最优的,但总是说不清其中的道理来。这时教师可以向学生解释,其实大家在潜意识中已经用到了期望,然后利用期望的定义为大家验算不同抛掷组合的期望值来说明大家选的组合确实是最优的,这时学生豁然开朗,理解了期望的真正含义。游戏可以继续,如果将若干个包装好的非正常硬币装入一个盒子里,比如将5枚双面都是反面的、1枚双面都是正面的硬币装入盒子里,学生从中摸一个硬币出来,再和原来那枚正常的硬币一起共抛10次,也可以选择不摸硬币,直接用手中正常硬币抛10次。这个时候,原来那种抛掷组合还是最优的吗;如果再改变箱子中两种硬币的比例,比如9枚双面是反的,1枚双面都是正的,结果又是怎样等等,这些问题可以留给学生课后思考,并作为案例分析测试题。按照上述设计教学案例,不仅让学生轻松学到知识,激发学生学习的能动性,还可以提高学生自己动手解决实际问题的能力,培养学生的创新能力。
3精选实用型案例,引导学生学以致用
如在讲解全概率公式时引入摸彩模型,中奖的概率是否与抽奖的先后顺序有关。利用全概率公式可以证明与顺序无关,大家机会是平等的。又如讲解事件独立性可以引入比赛局数制定的案例,如果你是强势的一方,是采取三局两胜制还是五局三胜制,这个例子也可以用大数定理来解释,n越大,越能反映真实的水平。又如设计车门高度问题,公共汽车车门的高度是按成年男性与车门顶头碰头机会在0.01以下来设计的:设某地区成年男性身高(单位:cm)X~N(170,36),问车门高度应如何确定?这个用正态分布标准化查表可解决。合理配备维修工人问题:为了保证设备正常工作,需配备适量的维修工人(工人配备多了就浪费,配备少了又要影响生产),现有同类型设备300台,各台工作是相互独立的,发生故障的概率都是0.01。在通常情况下一台设备的故障可由一个人来处理(我们也只考虑这种情况),问至少需配备多少工人,才能保证设备发生故障不能及时维修的概率小于0.01?这样的问题在企业和公司经常会出现,我们用泊松定理或中心极限定理就可以求出。学生参与到实际问题中去,解决了问题又学到了知识,从而有成就感,学习就有了主动性。
4运用多媒体及统计软件进行经典案例分析
在概率统计教学中,实际题目信息及文字很多,需要利用统计软件及现代化媒体技术。其一,采用多媒体教学手段进行辅助教学,可以使教师节省大量的文字板书,避免很多不必要的重复性劳动中,从而教师就可以将更多的精力和时间用于阐释问题解决的思路,提高课堂效率和学生学习的实际效果,有效地进行课堂交流。其二,使用图形动画和模拟实验作为辅助教学手段,可以让学生更直观地理解一些抽象的概念和公式。如采用多媒体教学手段介绍投币试验、高尔顿板钉实验时,可以使用小动画,在不占用过多课堂教学时间的同时,又能增添课堂的趣味性。而在分析与讲解泊松定理时,利用软件演示二项分布逼近泊松分布,既形象又生动。如果在课堂教学中使用Mathematica软件演示大数定律和中心极限定理时,就可将复杂而抽象的定理转化为学生对形象的直观认识,以使教学效果显著提高。在处理概率统计问题过程中,我们经常会面对大量的数据需要处理,可以利用Excel,SPSS,Matlab,SAS等软件简化计算过程,从而降低理论难度。不仅如此,在教师使用与演示软件的过程中,学生了解到应用计算机软件能够将所学概率论与数理统计知识用于解决实际问题,从而强烈激发学生学习概率知识的兴趣。
二、《概率统计》交互式网络教学平台的开发
以我校实施完全学分制为契机,基础教学学院依托数字化校园的网络环境,在原有精品课程平台建设的基础上,整合我校现有大学数学课程教学资源,建立了大学数学课程网络教学大平台,为教学双方提供了更好的信息化,网络化教学环境,为更好地提升我校创新型人才培养水平和教学质量奠定了基础。对于《概率统计》课程而言,虽然已经建成了《概率统计》精品课程,但由于课堂教学的课时相对较短,与学生的互动环节较少,因此,概率统计教学团队在对教学资源进行优化整合的基础上,对网络教学平台进行深度开发,改变传统教学过程中“教”与“学”的关系,实现向交互式的双向教学方式的转变。为了更好地适应我校《概率统计》课程的教学要求,我们将整个《概率统计》网络教学平台划分为十个子数据库:教师队伍信息库、教材及教案库、教学软件库、教学课件库、例题及数据库、教学视频库、数学实验库、答疑系统、评价系统及师生互动论坛。
1.教学团队师资力量强,教师结构合理,既有从事多年有教学经验的老教师,也有学有所成的硕士与博士,他们教学效果好,工作效率高。在“教师队伍”中,详细介绍概率统计教学团队教师的具体情况,让学生能够一目了然地弄清楚每一位教师的擅长点,以及教学风格,为更好地在课程教学中开展师生互动提供了有利条件。
2.教学团队经过多年的教学改革,积累了丰富的教学经验和教案,编写了相关教材,辅导书和习题册。在“教材及教案库”中,存储一些电子教材及一些实用的参考书籍,同时将对应课程的教学大纲、教学日历、内容简介,以及各章节的电子教案放入教案库中,方便学生预习、自主学习。
3.在“教学软件库”中,放入概率统计课程的在线备课系统,可以让教师根据教学需要和学生的实际情况,及时对课程教学中的内容进行修正和完善,使得课程教学更具有针对性和实用性。
4.在“教学课件库”中,存放概率统计课程的PPT教案,为教师备好每一堂课提供方便。同时,在进行集体备课时,可以从教学课件库中调出对应的课件,供所有教师参考和探讨,集全体教师之智慧和精华,备出更具有针对性的教案。
5.在“例题及试题库”中,存放概率统计课程的典型例题、同步测试题、综合测试题以及历年考研试题。让学生在学习中及时发现自己存在的不足,及时对相关知识点进行补学和充实,同时也让励志考研的同学及时掌握考研的方向,了解清楚该门课程的考研大纲,为学生的考研打好坚实的基础,吸引更多的学生加人我校的考研队伍。
6.在“教学视频库”中,存放一些与各种概率统计课程相关的教学视频,同时,对于教学团队中讲课水平特别突出的教师,将他们的部分教学过程录制成视频,存放入该视频库中。教师可以在休闲的时候随时点击这些视频,学习这些教师的授课技巧。这样,更有利于加强数学教师的教学素养和提高教学水平,尤其对于刚走上教学岗位的年轻教师,这种视频更具有实用价值。
7.“数学实验库”是一个符合当代教研教改需求的非常具有实用价值的数据库,针对目前比较流行且简明易懂的MATLAB软件,在该数据库中存入概率统计课程中各章节的数学实验,编写部分程序,同时留有实验题目,让学生自主编写。
8.如果学生在自学过程中遇到难题及不懂的知识点,就可以在“答疑系统”中直接询问老师,没有必要为了一个问题而跑到办公室去询问教师,这样节省了很多的时间。
在高校概率统计教材中,从数学文化的角度对概率统计教学进行诠释已经得到数学教育界的普遍重视,教材在数学文化价值教育方面起到至关重要的作用。高校概率统计教材在数学文化教育方面也做了大量的工作,我们以盛骤等人主编的《概率论与数理统计》(第四版)、缪全生主编的《概率与统计》(第三版)和同济大学应用数学系主编的《工程数学—概率统计简明教程》三本教材(后文中分别以教材一、教材二、教材三称之)作为例子,它们在数学文化渗透方面的特点体现在:
(1)教材设计更注重生活和技术应用领域背景的渗透
在内容编排方面,每个知识点都能注意以生活实际或当前的技术应用问题作为背景予以介绍,强调知识的直观性和应用背景,强调实际问题的解决,使得学生有比较直观的认识,能提高学生的学习兴趣和学习热情。如在介绍条件概率的定义时,教材几乎都能从掷硬币、掷骰子等简单的生活实际出发,从特殊到普遍地引出条件概率的定义。内容背景涉及较多的是产品质量分析模型(如质量、寿命、含量、误差等方面),教材一和教材三比教材二涉及应用背景的面更加广泛、量更大。在例题和习题设计方面,教材注重以解决有经济、社会、工程技术等方面实际背景的问题为主,旨在提高学生的实际应用能力。在所统计的三本教材中,具有应用背景的例题占总的例题数超过了50%,习题中有应用背景的题目在50%左右,特别是以自然科学为应用背景的题目占了绝大多数
(2)紧密结合信息技术的发展,提高统计计算能力的培养
加强数理统计的内容,注重统计方法在实际工作中的应用。如增加了假设检验问题中的P值检验法和一些统计图的应用,还介绍了bootstrap方法在数据处理方面的应用。增加Excel软件和“宏”数据分析工具的使用。信息技术的发展给概率统计的研究赋予更强大的工具,没有现代的专业统计分析软件作为研究工具,概率统计问题的研究是不可想像的,在概率统计教材中适当引入统计软件的运用是必要的。虽然现在统计分析软件的功能很强大,但需要经过专业的学习才能掌握,为适应概率统计的入门使用,盛骤等人主编的《概率论与数理统计》(第四版)中就增加了Ex-cel软件和“宏”数据分析工具在概率统计中的应用,特别是在数理统计方面的运用,这对没有经过专业统计软件学习的学生和使用者有很大的帮助。
2.高校概率统计教材数学文化元素渗透中存在的问题
(1)教材中数学史的呈现太少
呈现方式不明朗数学史的学习,能使学生了解数学在推动社会发展方面和社会发展之间的相互作用,能使学生了解数学科学的思想体系、数学的美学价值和数学家的创新精神等因素。教材中的定义、定理、法则和公式都是数学家们经过上百年甚至上千年的历史锤炼后的完美逻辑体系,这种完美的形式忽略了曲折复杂的数学发现过程,但正是这种过程隐含着丰富的数学文化元素。如对概率定义的引入,三本概率统计教材几乎都是这样表达“历史上有人做过……其结果如表……”,然后在表格中列出历史上的几个有关频率的试验,甚至有些教材只是用简短的语言一带而过,然后给出概率的统计定义,紧接着就给出概率的其他定义。这样的表达,学生缺乏对概率定义公理化过程的认识,也失去了一次培养学生提高学习概率统计兴趣与热情的机会。更重要的是,概率定义的形成本身就是数学抽象化过程的典型例子,在这个过程中,学生可以体会到数学的抽象特性和方法。遗憾的是,目前高校概率统计教材中出现数学史的地方实在太少了。据统计,教材一、教材二和教材三中出现数学史的地方仅有频率的定义中提到的德摩根、蒲丰和皮尔逊等人抛硬币试验的介绍或一些试验数据;教材二在引言中则对概率论的发展历史作了一个简介。三本教材中对数理统计的历史介绍等于0,其实概率统计教材中能出现数学史的地方比比皆是,教材可以充分利用这些素材进行呈现。
(2)应用背景相对薄弱
概率统计是一门实践性强、应用性广的学科,当前高校教材都注重生活和技术应用领域背景的渗透,社会科学的应用背景相对薄弱。这样的知识呈现方式,对提高学生的学习兴趣和应用意识都有很大的帮助。但数学文化背景的方式是多样,如重要数学名人物传、数学发展事件记、重要数学成果和概率统计在社会科学方面的应用等内容,这是体现数学文化价值的一种有效方式,也是学生从中获取数学思想方法、体会数学精神和体验数学美的重要途径,遗憾的是当前高校概率统计教材在这方面还比较缺乏。
(3)多元文化缺失
概率统计已经成为现代社会、经济、管理等学科的重要工具,高校概率统计教材在体现这些领域的应用方面有较大的篇幅,但与学生相关生活文化背景的联接方面显得不够,这容易导致学生认为很多概率统计的知识与他们生活或工作相隔遥远甚至没有关联,严重影响了学生学习概率统计的兴趣和态度。
二、概率统计教材设计
中凸显数学文化的思考现行的概率统计教材的知识系统逻辑体系已经经过多年的验证,证明是可行的。数学文化视野下的教材设计目的是,如何在现行教材的知识体系中体现数学文化的元素,数学文化很大一部分是内隐的,这就要求我们不能单纯把数学文化内隐的知识部分相关内容简单地累加到教材里面去,而应该有机地结合在概率统计外显的知识内容中去。下面谈几点构想。
1.关注数学史在教材中的作用
概率统计教材的内容安排要适当兼顾知识发现的历史,使学生能够领略到数学内容发现的过程,体会到数学知识发现过程所蕴含的数学思想、数学方法和数学精神,有利于学生数学知识体系的建构和优秀品质的形成。如在介绍“概率”的定义时,教材的编排最好能介绍概率定义形成的三个历史阶段:概率的统计定义、古典定义和公理化定义。使学生在学习概率的定义时能了解概率定义形成的历史,了解贝朗特悖论的意义,得到数学螺旋上升抽象过程的感悟,掌握数学思维的方法,从而学会批判、质疑、独立和严谨的思维品质。在学习DeMoivre-Laplace定理时可以介绍DeMoivre等人在二项分布正态逼近的研究工作,这项研究是数理统计学的基础,也是概率统计思想的重要体现,重温这段历史可以启迪学生的思维、激发学生的兴趣。回归与相关分析的发现对数理统计学发展的影响是极其重大的,这个统计模型的应用,使统计学由统计描述时期进入了统计推断的时期,它促使一个严谨的统计学框架的形成,学习该知识点内容时,很有必要向学生介绍回归与相关分析的产生历程。其实,概率统计中还有很多地方可以进行数学史介绍的,学生在了解这些知识产生的过程中将会得到浓厚的数学思维熏陶。
2.强调知识与文化的有机融合
概率统计的数学文化部分呈现要以导引的形式出现,而不能把相关内容简单地累加到教材中去,从而保护学生自我探索热情,使数学文化真正植根于学生的知识建构中去。如在“概率的基本概念”部分,有必要介绍概率定义形成的三个历史阶段,但在具体的教材呈现中,没有必要把这些历史材料详细地罗列到教材中去,如果只是简单地把数学史料添加到教材里面去,只能增加教材的容量,导致教材臃肿,变成数学史的堆积而已。而应该是在循序渐进介绍概率定义的同时,适当采用简洁和引导性的语言,营造一种宽松的数学学习环境,引导学生学会自己查找相关学习资源,让学生既能感受到概率定义的发展历史,也能掌握如何通过查找资料来进一步验证和了解这种发展的详细情况的能力。又如,在“假设检验”这一章,可以介绍历史上威尔登检验骰子是否均匀的试验,但没必要陈述这个试验的详细过程,可以以问题的形式把威尔登与皮尔逊对试验结果的争论呈现出来,使学生既能了解假设检验产生的这段历史,也可以重温探索科学的过程。
二、开放学生思维,明确教学目的
在数学教学过程中,学生是是教学的主体,每个人都有自己的思维能力,所以教师必须明确教学目的,使学生的思维得到尽可能的开放,促进学生探索创新能力的不断提高。因此,教师在选择案例时,要综合评估学生的学习能力,对概率的概念、公式进行仔细讲解,将统计知识点贯穿到整个课堂教学,使案例突出教学重点,达到知识点融汇教学的教学目的。开放课堂教学,不仅可以使学生掌熟练握更多的概率论与数理统计知识点,更能拉近学生与作者、学生与自己的师生距离,使师生之间的感情更加融洽,从而大大提高教学质量的目的。
三、有效组织教学,提高综合能力
在数学学习是整个过程中,打好基础是非重要的,因此,在概率论与数理统计的教学中运用案例教学,教师要有效组织教学,促进学生综合能力的提高。针对概率论与数理统计的难点和易点,循序渐进的提升难度,让学生熟练掌握每个知识点,培养学生敏捷的数学思维能力,不断开阔学生的视野,使学生的概率论与数理统计分析能力变得更强,从而达到提高教学质量的目的。例如:针对篮球投篮问题,根据球队人数的变化来计算投篮的概率,从最简单的计算开始,随着人数的变化,计算复杂程度也变得越来越高。这就是一个概率论与数理统计知识点逐渐加深的案例,通过这个案例教学,学生的思维能力可以不断增强,综合能力也会得到不断提高。
四、课后教学总结,不断改革创新
概率论与数理统计的教学中,案例教学方法应用的课后总结,是教师对课堂教学不足的完善,可以有效保证案例教学的教学质量,不断创新教学方法和模式,同时促进教师自我的不断提升。课后总结,分为学生的总结和教师的总结,学生通过总结,可以对案例教学进行仔细的分析,培养学生处理问题和解决问题的思路,提升学生实践动手能力;教师总结时,对重点知识进行再度印象加深,促进学生不断探索和创新,从而促进教师教学的不断创新。
二、数学建模思想融入课堂教学
教师在讲授概率论与数理统计课程时,面临着非常重要的任务。如何让学生通过学习增强对本课程的理解,并将知识合理地运用到实践中,是摆在教师面前的问题。教师要将数学建模思想合理地融入到课堂。
(一)课堂教学侧重实例
概率论与数理统计课程是运用性很强的一门课程。因此,将教学内容与实例想结合,可以有效提高学生的理解力,加深学生对知识点的印象。例如,在讲授概率加法公式的时候,可以用“三个臭皮匠问题”作为为实例。“三个臭皮匠赛过诸葛亮”是对多人有效合作的一种赞美,我们可以把这个问题引入到数学中来,从概率的计算方面验证它的正确性。首先可以建立起数学模型,三个臭皮匠能否赛过诸葛亮,主要是看他们解决实际问题的能力是否有差距,归结为概率就是解决问题的概率大小比较。不妨用C表示诸葛亮解决某问题,Ai表示第i个臭皮匠单独解决某问题,其中i=1,2,3,每个臭皮匠解决好某问题的概率是P(A1)=0.45,P(A2)=0.55,P(A3)=0.60,而诸葛亮成功解决问题的概率是P(C)=0.90。那么事件B顺利解决对于诸葛亮的概率是P(B)=P(C)=0.90,而三个臭皮匠解决好B问题的概率可以表示成P(B)=P(A1)+P(A2)+P(A3)。解决此问题的过程中,学生既感受到了数学建模的乐趣,也在轻松的氛围中学习到了概率知识。这种贴近实际生活的教学方式,不但可以提高学生学习概率的积极性,也可以增强教师从事素质教育的理念。
(二)开设数学实验课
数学实验一般要结合数学模型,以数学软件为平台,模拟实验环境进行教学。发展到今天,计算机软件已经很成熟,一般的统计计算都可以由计算机软件来完成。SPSS、SAS、MABTE等软件已经广泛得到了运用,较大数据量的案例,如统计推断、数据模拟技术等方面的问题,都可以用这些软件来处理。通过数学实验,不但可以体现数学建模的全过程,还能增强学生的应用意识,促使他们主动学习概率论与数理统计知识。学生通过软件的学习与运用,增强了动手能力,解决实际问题的能力也会有所增强。
(三)使用新的教学方法
众所周知,传统的填鸭式的教学方法很难取得好的教学效果,已经不适应现代教学的要求。实践证明,结合案例的教学方法可以由浅入深,从直观到抽象,具有一定的启发性。学生可以从中变被动为主动,加深对知识的理解。这种教学方法还能让学生的眼光从课堂上转移到日常生活,进行发散思维,学生会进一步发挥主观能动性,思考如何将实际问题数学化,如何结合概率论与统计知识解决实际问题,等等。在这种情况下,学生的兴趣提高了,教学效率自然也会得到提高。
(四)建立合理的学习方式
概率论与数理统计教学不能一味地照本宣科。数学建模并无固定模式,它需要的更多是技能的综合。教师在实际教学过程中,不应该以课本为标准,而应该多引导学生自主解决实际问题,让学生去查阅相关背景资料,以提高其自学能力。教师可以适当补充一些前言的数学知识,让一些新观念和新方法开阔学生的视野。在处理习题问题上,教师要适当引入一些不充分的问题,而不是仅仅局限于条件比较充分的问题上,要让学生自己动手分析数据、建立模型。教师应该经常开展专题讨论,引导学生勇于提出自己的见解,加强学生间的交流与互助。例如,在讲授二项分布知识时,为了加深学生对知识的领悟,教师可以用“盥洗室问题”为实例来讲授二项式的实际运用。问题:宿舍楼内的盥洗室处于用水高峰时,经常要排队等待,学生对此意见很大。学校领导决定把它当作一道数学题来解答,希望学生能从理论上给出合理的解决方法。分析:首先收集基本的资料,盥洗室有50个水龙头,宿舍楼内有500个学生,用水高峰期为2小时(120分钟),平均每个学生用水时间为12分钟,等待时间一般不超过12分钟,但经常等待会让学生失去耐心。学生希望100次用水中等待的次数不超过10次。解决方法:设X为某时刻用水的学生人数,先找到X服从什么分布。500个学生中,每个学生的用水概率是0.1,现在X人用水,与独立实验序列类似,比较适合用二项分布,因此设X服从二项分布,n=500,p=0.1,用概率公式表示为P(X=K)=CKnPK(1-P)n-K。接下来计算概率,主要关注不需要等待的概率(即X<50),P(X<50)=∑49K=0CKnPK(1-P)n-K,这个二项式分布是一个初步的模型,可按二项分布来计算。由于n较大(n=500),直接用二项分布计算过于复杂,我们可以利用两种简化近似公式来计算(泊松分布和正态分布)。经过查正态分布表,我们可以算出x=58,这说明水龙头的个数在59~62这个范围时,学生等待的时间概率比较合理。
三、课后练习反馈数学建模思想
数学课程离不开课后练习,课后作业是其重要的组成部分,对于巩固课堂知识、进一步理解所学理论具有重要作用。因此,教师要把握好课后练习环节。概率论与数理统计这门课涉及到很多随机试验,一般的统计规律都需要在随机试验中找到结果。例如通过投掷骰子或硬币可以理解频率与概率的关系,通过双色球的抽样可以理解随机事件中的相互独立性,统计一本书上的错别字可以判断其是否符合泊松分布等。通过亲自做实验,学生们不但能探求到随机现象的规律性,还能进一步巩固所学的统计理论。除了一般的练习题以外,教师可以适当增加一些与日常生活密切相关的概率统计题目,这些题目往往趣味性较强。例如,在知道彩票的抽奖方法和中奖规则后,可以明确三个问题:(1)摸彩票的次序与中奖概率是否相关?(2)假如彩票的总量是100万张,则一、二等奖的中奖概率是多少?(3)一个人打算买彩票,在何种情况下中奖概率大一些?这种课后练习对于学生趣味的提高很有帮助。
四、考核方式折射数学建模思想
作为一门课程,肯定需要考核,这是教学过程中的一个必然环节。课程考核是评估教学质量的重要方式。概率论与数理统计课程传统的考试一般采用期末闭卷考试,教师通常按固定的内容出题。这种情况下,学生为了应付考试,会把很多精力都用在背诵公式和概念上面,从而会忽视知识的实际运用。学生的综合成绩虽然也包括平时成绩,但期末闭卷考试往往占据很大比例。就是是平时成绩,其主要还是考核学生课后的习题完成情况。因此,考核实际就成了习题考试。对于学生在课后的实验,考核中往往很少涉及。这会导致学生逐渐脱离日常实际,更注重课堂考勤和作业。要改变这种情况,有必要改变传统的考核方式。灵活多变的考核方式才更有利于调动学生的积极性,激发他们各方面的潜能。考核可以适当增加平时成绩所占的比重,比如,平时成绩可以占总成绩的30%以上。平时成绩主要采用开放性考核,由课后实验或课外实践组成。教师可以提出一些实践问题,让学生自主去解决。学生可以单独完成任务,也可以组队进行,最后提交一份研究报告,教师在此基础上进行评定。
1.2离散型随机变量与连续型随机变量的类比对于离散型随机变量,学生感觉较容易,但对于连续型随机变量,往往学生感觉抽象难理解。由于分布列在离散型随机变量中的地位与密度函数在连续型随机变量中的地位等同,因此对于离散型随机变量中的边缘分布列与联合分布列的关系可以过渡到连续型随机变量中边缘密度函数与联合密度函数的关系中去,此外诸如随机变量的独立性的充要条件以及期望与方差的计算均可轻松过渡。具体我们可通过“把连续的问题离散化”这种方法,实际是将对离散型随机变量中对分布列的求和变成对连续型随机变量中的密度函数求积分即可。表1我们将对其中的部分性质及计算作一个简要的类比。
1.3一维随机变量与二维随机变量的降维类比任何学习都是循序渐进的,一般来说低维空间的知识相对简单,容易被学生接受,所以最好的方法是从低维空间向高维空间过渡学习。降维类比法是将高维空间中的数学对象降低到低维空间中去观察,利用低维空间中数学对象的性质类比归纳出高维数学对象的性质。通过上面的类比得知抽象的二维随机变量的分布函数与一维随机变量有着一致的表达式,从而大大降低了学习的难度。此外,二维离散型随机变量的联合分布列与连续型随机变量的密度函数的性质与计算均可借助一维随机变量的相关知识引入。
二、工科《概率论与数理统计》课程的现实状况
工科《概率论与数理统计》课程的教学状况,多年来变化不大,人们在积极进行着教学改革的研究与探索。我们经多年的深入研讨把工科数学《概率论与数理统计》课程的教学现状归纳为三点:重视经典内容的完善而轻视现代内容的引入;重视概率论内容的完整轻视数理统计内容的丰富;教学上从训练应试方面考虑得较多而从提高能力素质方面考虑得较少。工科《概率论与数理统计》课程作为工科院校重要的基础课,工科数学《概率论与数理统计》课程教学内容发展得已经比较完善成熟,而且每个人的看法也不一致,见仁见智,但是工科基础数学课程的教学要进行教学改革的认识是一致的。工科基础数学课程教学改革的困难点是教学内容的改革,工科基础数学课程的教学内容改革是教学改革中最应该深入地去研究与探讨的。工科基础数学《概率论与数理统计》课程的教学方法的教学改革根据教学内容和教学对象用正确的教育理念而进行。教无定法,教学方法不能一成不变,更不能有什么“样板”,但教有定则,教学方法必须切合实际。工科基础数学《概率论与数理统计》课程的教学手段的改革应要注重,数学教师一般来说不太注重教学手段的改革,有一种陈旧的观念认为靠嘴和粉笔就能把数学课完全讲好。根据教育心理学观点,课堂教学的过程中教学手段的措施对受教育者是十分重要的,也是教育从应试教育转向素质教育的重要环节。
三、工科《概率论与数理统计》课程的教学内容改革
根据工科数学《概率论与数理统计》课程的现实状况,我们对工科数学《概率论与数理统计》课程教学内容的改革方面归纳为如下几个个方面:一是教学内容上应体现现代科学与技术的发展,处理好继承与创新的关系,在保证教学内容精华的同时,必须重视引入现代观念的教学内容。二是为了提高学生的能力与素质,教学内容改革必须从提高学生的文化修养水平与数学思想素质去考虑。三是在教学内容中应强调逻辑思维、抽象思维、计算技能等方面能力的培养,把强化数学理念与思维方法的传授和培养看成教学内容改革的方向。四是在教学内容的改革上要把《概率论与数理统计》作为工科基础课程的支撑作用放到主要的位置上,学习的目的全在于应用,工科数学课程的教学内容应该充实这方面的内容。在工科《概率论与数理统计》课程教学内容的教学改革上我们总结了几项原则:①坚持标准,教学内容应按培养目标设定,应满足后继的专业课程需要。②保证质量,教学内容的改革必须要以保证质量为大前提,为了保证质量,相应的教材改革一定要跟上。③鼓励实验,教学内容的改革要进行实验,在积累了一定的经验后在一定的范围内进行推广,应该是以点带面,但在面上应该稳妥。④要遵循教育规律,教育教学改革问题是学术问题,是一项大课题,提倡多听教育专家们和心理学家们的意见。美国在中学数学课程改革过程中,急于向现代迈进,把大量的现代数学概念引入中学,编写《统一现代数学》,结果以失败而告终,这个教训值得记取。⑤少而精的原则,教学内容不能越来越多,教材也越来越厚,要搞好继承与创新的关系。⑥教学内容要体现学科的科学性、系统性,体现理论联系实际的理念,旧的体系可以打破,新的体系必须符合科学性、系统性,不能违背思维规律和采取实用主义。
四、工科《概率论与数理统计》课程的教学方法改革
关于工科数学《概率论与数理统计》课程的教学方法,我们认为,虽然教无定法,但教有定则。集我们多年的数学教学经验,经过长时期与同行们的深入研讨,我们归纳总结了工科数学《概率论与数理统计》课程教学方法的改革应该明确以下四个方面:
第一方面是强调三教作用。教学活动最主要的是课堂教学这一环节,不管用什么教学方法把提高课堂教学质量作为提高教学质量和加强素质教育的关键与突破口。必须明确在教学改革中更要强调优化一堂课的教学,为此强调三教的作用:①教思想,即向学生讲请楚《概率论与数理统计》课程的随机数学学科处理问题的思想方法。教学内容要体现辩证唯 物主义思想,结合科学技术和数学发展的历史介绍某些理论的来源与实际背景,讲述数与形对应的思想,数与形是数学中的两大支柱,每研究概念都应把数与形结合起来进行讨论等。②教方法,教《概率论与数理统计》课程中用随机数学解决实际问题的思想方法。应在工科数学《概率论与数理统计》课程的教学中讲贯穿随机数学解决问题的思维方法是人类的基本思维方法,例如检验与估计、分析与综合、演绎与归纳、系统与整理等等。再如讲清楚解决问题的方法,有顺着思路正推的方法,即由因导果综合归纳法,也有逆着思路反推的方法,即由果寻因分析法;有直接用条件去推出结论的推理法,即直接证法,也有从反面进行的推理的方法,即反证法;有肯定结论的说理方法,即演绎法,也有否定结论用举例的方法,即反例法等。③教做人,教学生做人的道理,将启迪思想的教育贯彻在课堂教学活动中,结合科学技术和数学科学的发展历史,根据不同时代的特征,结合教学内容来激发学生的学习积极性,结合教学的实践培养学生严谨的治学态度,结合学习实践培养学生奋发好学的品质。
第二方面是重视三个面向,素质教育的核心是培养学生全面发展,也是区别与应试教育的基本特征,因此强调重视三个面向:①面向全体学生,促进全体学生的全面成长,这是教学的立足点,因此教学应对全体学生有统一的要求,促进他们的全面发展。②面向学生的大多数,教学的出发点要求应针对大多数学生的实际情况去要求和安排,因材施教,实施的措施应使大多数学生的成绩有所提高。③面向两头的学生,教学的注意点是一头注意学习好的学生,激励这些学生取得更优异的成绩,一头是注意学习较差的学生,鼓励这些学生增强学习的信心,帮助他们改进学习方法,使学习较差的学生在已有的成绩基础上能有所提高。
第三方面是引导学生走正确的学习道路,教学活动像教师为向导引导学生在攀登知识山峰,向导的作用是引导走正确的道路,在教学上要明确怎样引导学生走上正确的学习道路。①引导学生走学会到会学的正确道路,在当前的国内外教学改革中,不仅强调教师的主导作用,而且强调学生的主体作用,为此课堂教学一方面要传授知识,使学生学会更多的知识,更重要的是教会学生怎样掌握这些知识的学习方法,从而提高学生的能力和素质,以达到教学改革的目的。②引导学生走苦学到乐学的道路,优秀人才的成长都经历过一段艰苦学习的里程,因此在教学中应向学生们灌输学习是艰苦的劳动,在成长的道路上要出大力流大汗的观点。在教学方法上必须适应年轻人的特点,教学方法应发挥情感在教学中的作用,用愉快性教学法进行教学,讲课有趣味有吸引力,在学生苦学的基础上引导学生克服厌学的情绪,培养学习兴趣,使得学生不把学习看成一种很重的负担,而看成是一种有趣味的事,即引导学生走乐学的道路。③引导学生走要我学到我要学的道路,使学生认识到学习是每个现代人的自身需求,从被要求学习到自己喜爱学习来自于正确的动力和恰当的压力。教学改革的目的是激励学生成长为现代社会需要的人才。
第四方面是提倡几种做法,根据我们多年的教学经验和同行们的广泛研讨,认为在教学方法的改革中应明确提倡几种做法。①注重针对性,针对教学中不同的教学内容、教学对象选用适当的教学方法,教无定法,教有定则,重要的是教学方法应真正切合学生的实际,注重情感因素在教学中的作用,使教师在教学活动中不断地形成教师自己的教学风格,实现教学方法的改革,教育学家和心理学家经过试验提出如下经验公式:人类接受信息的总效果=7%的文字+38%的语音+55%体态语言(体态语言是指发出信息者的表情、眼神、姿势、动作、手势等),可见情感在教学活动中的重要作用,这就是我们常说的教师在讲课时应有一种激情去激发感染学生。②强调启发性,老师的责任之一是启迪学生的思想,教导学生做一个有思想的人。老师的责任之二是给以学生开启知识的宝库,培养学生成为有学问素质高的人。老师的责任之三是培养学生思维、创造、开拓的能力,教导学生成为一个能生活会工作有创造能力的人。培养学生成为上述的人是教学改革的目标。③提高积极性,提高教与学的积极性即老师和学生的积极性,强调教学相长,教育教学改革的最终目的是充分发挥教与学的积极性,让教学一线的教师真正发挥其水平,让培养的学生能更主动更自觉地学习并完善自我,使我们培养的学生成为适应现代化的人才。
五、工科《概率论与数理统计》课程的教学手段改革
随着科技的发展,教学手段也要进行相应的改革。数学教师一般来说不太注意教学手段的改革,认为靠嘴和粉笔就可以把课讲好了,这是一个误区。在这里我们认为完全有必要强调进行教学手段的改革,根据教育学和心理学的理论,在教学过程中有效的课堂教学方式有利于调动学生听课的积极性,老师适当结合体态语言进行课堂教学有助于吸引学生听课的注意力,有利于激发学生的听课热情,更好地培养了学生观察、分析问题的能力。在课堂教学中适当变换方式,适当配合教具和体态语言是有必要的。教育家和生理学家的实验已经证明,人通过听觉获得的信息,长期记忆有15%,通过视觉获得信息,长期记忆有25%,通过视觉和听觉的结合,长期记忆则可达85%。实验表明,人类接受信息只有在全神贯注的条件下,在大脑皮层停留8到20秒才能储存起来。教学改革有必要十分重视教学手段的改革。当前工科基础数学课程的教学辅助手段有用教具、模型、挂图、投影仪、影像、计算机辅助教学、课件等等。工科基础数学课程教学手段的改革要特别注意结合工科基础数学课程的特点,在工科基础数学课程的课堂教学中一定要注意给学生留有认知和思考的时间与空间。
工科数学《概率论与数理统计》课程的教学改革只有把教学的内容、方法、手段的教学改革相结合才能有成效。经过广大同行的努力,相信工科基础数学《概率论与数理统计》课程的教学改革会取得进一步深化,工科数学《概率论与数理统计》课程会以崭新的面貌展现在工科院校中,工科基础数学《概率论与数理统计》课程将以崭新的姿态在工科院校中起到真正的基础支撑作用。
参考文献:
[1]徐利治.数学方法论选讲[M].武汉:华中工学院出版社,1988.
[2]解思译.世界数学家思想方法[M].济南:山 东教育出版社,1998.