时间:2022-10-01 13:24:27
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇机械手设计论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
一、 选题的目的和意义
据统计,我国60 岁以上的老年人已有1.12 亿。伴随老龄化过程中明显的生理衰退就是老年人四肢的灵活性不断下降,进而对日常的生活产生了种种不利的影响。此外,由于各种疾病而引起的肢体运动性障碍的病人也在显著增加,与之相对的是通过人工或简单的医疗设备进行的康复理疗已经远不能满足患者的要求。随着国民经济的发展,这个特殊群体已得到更多人的关注,治疗康复和服务于他们的产品技术和质量也在相应地提高,因此服务于四肢的康复机器人的研究和应用有着广阔的发展前景。
目前世界上手功能康复机器人的研究出于刚起步状态,各种机器人产品更是少之又少,在国内该领域中尚处于空白状态,临床应用任重而道远,因此对手功能康复机器人的研究有广阔的应用前景和重要的科学意义。
目前大多数手功能康复设备存在以下一些问题:康复训练过程中,缺乏对关节位置、关节速度的观测和康复力的柔顺控制,安全性能有待提高;大多数手功能康复设备没有拇指的参与;感知功能差,对康复治疗过程的力位信息和康复效果不能建立起有效地评价。本课题针对以上问题,采用气动人工肌肉驱动的手指康复训练机器人实现手指康复训练的多自由度运动,不仅降低了设备成本,更重要的是提高了系统对人类自身的安全性和柔顺性,且具有体积小,运动的强度和速度易调整等特点。
课题的研究思想符合实际国情和康复机器人对系统柔顺性、安全性、轻巧性的高要求 。它将机器人技术应用于患者的手部运动功能康复,研究一种柔顺舒适、可穿戴的手功能康复机器人,辅助患者完成手部运动功能的重复训练,其轻便经济、穿卸方便,尤其适于家庭使用,既可为患者提供有效的康复训练,又不增加临床医疗人员的负担和卫生保健。
综上所述,气动人工肌肉驱动手指康复训练机器人的设计是气压驱动与机器人技术相结合在康复医学领域内的新应用,具有重要的科学意义。
二、 国内外研究动态
2.1 国外研究动态
美国是研究气动肌肉机构最多的国家,主要集中在大学。
华盛顿大学的生物机器人实验室从生物学角度对气动肌肉的特性作了深入研究,从等效做功角度建模,并进行失效机理分析,制作力假肢和仿人手臂用于脊椎反射运动控制研究。
vanderbilt 大学认知机器人实验室(cognitive robotics lab, crl)研制了首个采用气动肌肉驱动的爬墙机器人,并应用于驱动智能机器人(intelligent soft-arm control, isac)的手臂。
伊利诺伊大学香槟分校的贝克曼研究所对图像定位的5自由度soft arm 机械手采用神经网络进行高精度位置控制和轨迹规划。亚利桑那州立大学设计了并联弹簧的新结构气动肌肉驱动器,可以同时得到收缩力和推力,并与工业界合作开发了多种用于不同部位肌肉康复训练的小型医疗设备。
英国salford 大学高级机器人研究中心对气动肌肉的应用作了长期的系统研究,开发了用于核工业的操作手、灵巧手、仿人手臂以及便携式气源和集成化气动肌肉,目前正在研究10 自由度的下肢外骨骼以及仿人手的远程控制。
法国国立应用科学学院(instituted national dissidences appliqués, insa)研究了气动肌肉的动静态性能和多种控制策略,目前正在研制新型驱动源的人工肌肉以及在远程医疗上的应用。
比利时布鲁塞尔自由大学制作了新型的折叠式气动肌肉用于驱动两足步行机器人,实现了运动控制。
日本bridgestone 公司在rubber tauter 之后又发明了多种不同结构的气动肌肉。德国festoon 公司发明了适合工业应用的气动肌腱fluidic muscle,寿命可达1000万次以上,同时还对气动肌肉的应用作了许多令人耳目一新的工作。英国shadow 公司研制了目前世界上最先进的仿人手。美国的kinetic muscles 公司与亚利桑那州立大学合作开发了多种用于肌肉康复训练的小型医疗设备。
lilly采用基于滑动模的参数自适应控制策略,实现了单气动肌肉驱动的关节位置控制。
2.2 国内研究动态
自20 世纪90 年代以来,我国陆续开始了气动肌肉的研究。
北京航空航天大学的宗光华较早开始气动肌肉的研究,分析了其非线性特性、橡胶管弹性及其自身摩擦对驱动模型的影响,并应用于五连杆并联机构,通过刚度调节实现柔顺控制。
上海交通大学的田社平等运用零极点配置自适应预测控制、非线性逆系统控制以及基于神经网络方法,实现单自由度关节的快速、高精度位置控制。
哈尔滨工业大学的王祖温等分析了气动肌肉结构参数对性能的影响、气动肌肉的静动态刚度特性以及与生物肌肉的比较,提出将气动肌肉等效为变刚度弹簧,设计了气动肌肉驱动的具有4 自由度的仿人手臂、外骨骼式力反馈数据手套和6 足机器人,采用输入整形法解决关节阶跃响应残余震荡问题。
北京理工大学的彭光正等先后进行了单根人工肌肉、单个运动关节以及3 自由度球面并联机器人的位置及力控制,采用了模糊控制、神经网络等多种智能控制算法,并设计了6 足爬行机器人和17 自由度仿人五指灵巧手。
哈尔滨工业大学气动中心的隋立明博士也通过实验得到了气动人工肌肉的一个更简洁的修正模型和经验公式并对两根气动人工肌肉组成的一个简单关节系统进行实验建模和采用位置闭环的控制方法进一步验证气动人工肌肉的模型。
上海交通大学的林良明也对气动人工肌肉的轨迹学习控制进行了仿真研究给出了学习的收敛性的初步结论为下一步的学习控制奠定了基础。其中田社平通过对气动人工肌肉收缩在频率域上的数学模型并对它的结构及其静动态特性进行了理论分析建立了相应的静态力学方程。
2003年付大鹏等,以机械手抓取物体为分析对象,采用矩阵法来描述机械手的运动学和动力学问题,以四阶方阵变换三维空间点的齐次坐标为基础,将运动、变换和映射与矩阵计算联系起来建立了机械手的运动数学模型,并提出了机械手运动系统优化设计的新方法,这种方法对机械手的精密设计和计算具有普遍适用意义。
2005年车仁炜,吕广明,陆念力对5自由度的康复机械手进行了动力学分析,将等效有限元的方法应用到开式的5自由度的康复机械手的动力分析中,这种方法比传统的分析方法建模效率高、简单快捷,极其适合现代计算机的发展,的除了机械臂的动力响应曲线,为机械手的优化设计及控制提供理论依据。
2008年北京联合大学张丽霞,杨成志根据拿取非规则物品的任务要求,采用转动机构和连杆机构相结合,设计了五指型机器手,手指弯曲电机与指间平衡电机耦合驱动,实现了机器手的多角度张开、抓握运动方式,对实用型仿人机器手的机构设计有参考意义。
2009年杨玉维等人对轮式悬架移动2连杆柔性机械手进行了动力学研究与仿真,。采用经典瑞利.里兹法和浮动坐标法描述机械手弹性变形与参考运动间的动力学耦合问题, 综合利用拉格朗日原理和牛顿.欧拉方程并在笛卡尔坐标系下,以矩阵、矢量简洁的形式构建了该移动柔性机械手系统的完整动力学模型并进行仿真。
2009年罗志增,顾培民研究设计了一种单电机驱动多指多关节机械手,能够很好的实现灵巧、稳妥的抓取物体,这个机械手共有4指12个关节。每个手指有3个指节,由两个平行四边形的指节结构确保手指末端做平移运动,这种设计方案很好的实现了控制简单、抓握可靠的目的。
从目前来看,国内对气动人工肌肉的研究仍处于刚起步的阶段。有关气动人工肌肉的研究与国外还有相当的差距对气动人工肌肉中的许多问题,还没有进行深入的研究。此外,采用气动人工肌肉作为机器人驱动器的研究还不成熟。
三、 主要研究内容和解决的主要问题
目前大多数手功能康复设备存在以下一些问题:康复训练过程中,缺乏对关节位置、关节速度的观测和康复力的柔顺控制,安全性能有待提高;大多数手功能康复设备没有拇指的参与;感知功能差,对康复治疗过程的力位信息和康复效果不能建立起有效地评价。为此,课题主要研究内容:设计一种结构简单,易于穿戴,并且安全、柔顺、低成本,使用方便的气动手功能康复设备。对气动手指康复系统进行机构运动学分析、用mat lab软件对康复训练机器人的康复治疗过程的力位信息进行仿真分析。
要实现上述的目标,系统中需要着重解决的关键技术有:
(1)基于已有上肢康复训练机器人外骨骼机械手机械结构部分的设计,对手指康复训练方法分析和提炼。 主要包括:人手部的手指弯曲抓握动作分析,气压驱动关节机构自由度的优化配置。使机械手能够实现手指的弯曲、物体的抓握等手部瘫痪患者不能实现的动作。
(2)对机器人机械机构的运动学分析。主要包括:气压驱动的手指关节外骨骼机械机构的运动学分析。
(3)机器人机构的力位信息仿真。主要包括:用mat lab软件进行机器人气压驱动终端的力位信息 仿真。
根据总体方案设计以及工作量的要求,外附骨骼机械手系统是上肢康复训练机器人的一部分,本文主要是研究手指康复机械系统运动学、动力学分析工作。
四、论文工作计划与方案
论文工作计划安排:
2010年9月——2011年6月准备课题阶段:
主要工作:学习当今最先进的机器人设计技术;学习用matlab软件进行计算仿真及优化,查阅国内外的资料,对康复机械手作初步了解。
2011年7月——2011年9月课题前期阶段
主要工作:课题方案设计,拟写开题报告,开题。
2011年10月——2012年7月课题中期阶段
主要工作:开始具体课题研究工作,根据已有上肢康复训练机器人外骨骼机械手机械结构部分设计,对手指康复训练方法分析和提炼。研究手指康复机械系统运动学、动力学分析工作。
2012年8月——2012年12月课题后期阶段
主要工作:对手指康复机器人进行模拟仿真,对设计进行优化,并在此基础上进一步完善课题。
2013年1月——2013年4月结束课题阶段
主要工作:整理相关资料,撰写论文,准备进行毕业论文答辩。
2013年5月——2013年6月论文答辩阶段
主要工作方案:
1. 完成学位课与非学位课学习的同时,进行市场调研,对手指康复机械手作初步了解。
2. 查阅资料,了解气动手指康复机器人的国内外发展现状。
3. 分析已有上肢康复训练机器人外骨骼机械手机械结构的部分设计。
4. 对现有手指康复训练方法设计进行分析和提炼,分析其优缺点。
前 言:
气动机械手能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。气动机械手具有结构简单、重量轻、动作迅速、可靠、节能、不污染环境、可实现无级调速、易实现过载保护等优点,特别适用于汽车制造业、食品和药品包装行业、化工行业、精密仪器制造业和军事工业等。
在现代工业技术应用的气动机械手能够实现4个自由度的运动,其各自的自由度的驱动全部由气动肌肉来实现。最前端的气爪抓取物品,通过气动肌肉的驱动实现各自关节的转动,使物品在空间上运动,根据合理的控制,最终实现机械手的动作要求。气动机械手回转臂的设计主要是选择合适的控制阀,设计合理的气动控制回路,通过控制和调节各个气缸压缩空气的压力、流量和方向来使气动执行机构获得必要的力、动作速度和改变运动方向,并按规定的程序工作。
1.气动机械手的原理
气压传动机械手是以压缩空气的压力来驱动执行机构运动的机械手。它巧妙地应用力的平衡原理,使操作者对重物进行相应的位移,就可在空间内平衡移动定位负荷。重物在提升或下降时形成浮动状态,靠气路实现微重力的物料位移,操作力受工件重量影响。无需熟练的点动操作,操作者用手推拉重物,就可以把重物正确地放到空间中的任何位置,或者通过操作台控制工件的位移可完成以下动作:送料、预夹紧、手臂上升、手臂旋转、小臂伸长、手腕旋转。
图1:气动机械手系统工作原理图
气压传动机械手的优点:(1)不用增速机构就能获得较高的运动速度,这是简易机械手的一项主要性能,其可适应各种快速自动搬运的工作。(2)能源方便,工厂都有压缩工作站。(3)空气泄漏基本无害。(4)适应易爆、易燃等恶劣环境。
(5)结构、保养都简单,成本低。(6)可将直线风缸和摆动风缸做成手臂的一部分,结构简单,刚性好。
2.气动机械手的主要部件和设计要求
根据模块化设计思想,机械手的各模块化机构分别为:立柱、手臂、小臂、手腕和手爪几个部分。论文选择圆柱坐标式机械手,木设计的机械手具有3个自由度:手臂伸缩;机身回转;机身升降。木设计的机械手主要由3个大部件和3个气缸组成:手部,采用一个气爪,通过机构运动实现手爪的运动。臂部,采用直线缸来实现手臂的伸缩。机身,采用一个直线缸和一个回转缸来实现手臂升降和回转。
机械手的手部是机械手上承担抓取工件的机构,由于被抓取物件(炮弹)的形状近似于圆台,所以,其手爪采用特殊的V字型结构,即手爪的内表而设计成与圆台斜度相同的斜而,即保证了抓取的稳定又不会因“线接触”而影响炮弹的表而质量。通过对平衡气缸内空气压力快速精确的调节,实现对某一重量范围内工件的实时平衡状态。机械手可选择定制功能:平衡系统;垂直提升;负载平衡。设备回转关节设置刹车系统,可在任意所需要的位置刹车,使机械手可以长期或定期保持需要的状态。翻转90度、翻转180度和翻转任意角度(MAX270°);断气保护:设备被意外断气时,设备上的储气罐装置可保证工人正常完成一个循环工作,然后进入刹车状态指不功能:负载指示、到位指示。误操作保护功能:工件在悬空时不可被释放。人性化操作手柄:控制按钮和人性化防滑手柄集成一体,让操作人更便捷操纵机体。工件表面保护:夹具接触工件部位装置保护物件,保证工件表而不会被刮伤。高效率工作:夹具设置抓取导向,让工件的拾取更高效。
控制系统可根据动作的要求,设计采用数字顺序控制。它首先要编制程序加以存储,然后再根据规定的程序,控制机械手进行工作程序的存储方式有分离存储和集中存储两种。分离存储是将各种控制因素的信息分别存储于两种以上的存储装置中,如顺序信息存储于插销板、凸轮转鼓、穿孔带内;位置信息存储于时间继电器、定速回转鼓等;集中存储是将各种控制因素的信息全部存储于一种存储装置内,如磁带、磁鼓等这种方式使用于顺序、位置、时间、速度等必须同时控制的场合,即连续控制的情况下使用。
3.机械手回转臂的结构优化措施
末端执行器
结构优化
中图分类号:TB47 文献标识码:A 文章编号:1672-3791(2012)02(a)-0001-01
1 水果收获机器人的概念和研究意义
水果收获机器人主要分为两部分:机器人的本体结构部分和控制部分。其中,本体结构部分又可分为:机械手,末端执行器,底部平台,有的还有视觉系统。
在中国,随着农村经济的快速发展和不断调整种植结构,水果栽培面积,例如苹果、柑橘和葡萄,达到自199 3年以来的900万公顷,占世界上水果种植面积总数的四分之一。然而,水果收割任务中50%到70%的劳动力还是靠体力劳动。因为农业人口正在减少,收获自动化亟待普及。此外,由于果树是高个子,收割工作需要使用梯子,使手工收获危险高和效率低下。所以,农业收获机械化亟待普及。因为水果本身易损伤和生长环境的复杂等因素的制约,现阶段的各种水果收获机器人都有各种不足。本文就近几年来的有关论文进行研究学习及对本地柑橘的生长环境的调研,拟设计了一种适合本地柑橘机械采摘的简易机械臂及末端执行器。
2 本地柑橘的自然采摘环境
浙江大部分都是山地地貌,并且大都种植了柑橘、芦柑、胡柚等柑橘属的植物。虽然浙江的气候、土壤等都适宜于柑橘的生长,但是浙江的山地地貌也给采摘和运输带来了一定的难度。每年的采摘季节,需要大批的劳动力,而于此相反的是,本地的劳动力日渐下降,全都去城镇务工了。因此,针对柑橘的采摘机器人呼之欲出。柑橘果实外有一层较厚的果皮,它能很好的减轻柑橘间的碰撞冲击力。
3 本设计的末端执行器及机械臂的结构
3.1 采摘机械手的设计
与工业机器人机械手不何,果蔬果实收获机器人的机械手,所处的外部环境是复杂的、多变的、非结构的,并且与果实的栽培方式有很大关系。因此,设计机械手应在考虑栽培方式的基础上,使果实处于其作业空间内,并且能够避免障碍物(叶子、茎秆等),准确地抓取到果实。对于柑橘、苹果等树冠高大的果树,机械手需要较大的作业空间。为此,本设计采用三个关节的折叠臂使达到所需的作业空间,并且可以折叠便于携带。
具体三维模型见图1。
3.2 末端执行器的设计
目前各地研究的收获机械手的末端执行器大多为:先由机械手爪抓住果实,然后通过机械手爪转动来扭断果柄;或者在手爪抓住果实后,用另一个剪刀去剪断呆柄,然后机械臂把水果运输到指定点,手爪放开。这样的设计一定程度上降低了收获机械人的收获效率。
本设计的末端执行器主要由支架,动力部分,传动部分,果梗剪断器,果实传送部分五个部分组成,具体看图2。此末端执行器由电机通过齿轮驱动果梗剪断器剪断果梗,同时果实掉入果梗剪断器下方的柔性导管中,果实通过柔性导管被马上运输到指定点。
本设计的末端执行器和普通的执行器相比,不但从减少电机的数量,并且提高收获机械人的工作效率。其中图2中的柔性软管不仅代替了普通的末端执行器的手爪功能,从而减去了一个被驱动元件,还能直接把采摘得果实直接运送到指定点,进而大大提高了收获效率。但由于运输过程中有一定碰撞,所以此末端执行器一般适用于柑橘等柑橘属的水果。
此外,由于不同品种的柑橘的果梗粗细不同,果实的直径大小不同,我们可以根据采摘对象的不同,更换不同的果梗剪断器,不同直径的柔性管道,甚至整个末端执行器也可更换。
3.3 建立实物模型,检验实际效果
根据三维建模的相关数据及考虑现实的取材便利,我们用轻质不锈钢做为主材料,直流电机为动力部分,齿轮为传动部件,塑料管做为柔性管道制造出了四自由度的柑橘采摘机械手模型(图3)。并且,在实验室里,模拟运行了此机械手的采摘功能。在实验室里,该柑橘采摘机械手模型在人的控制下基本能实现在竖直空间上的上下自由运动。并且顺利剪断果梗,使果实顺利掉入由塑料管充当的柔性管道中。最终,果实顺着柔性管道顺利到达指定位置。
4 结语
对于目前水果收获机器人的机械手和末端执行器存在的问题。本文提出了自己的见解:因机械手的结构与果蔬的生长状态有关,可采用关节型的折叠机构。对于水果收获机器人只能针对一种对象进行作业的现状,本设计提出了一套适合柑橘属果实采摘的末端执行器的设计,即只需要更换末端执行器,这样收获机器人的利用率将大大提高。另外,柔性的管道节省去了机械臂把水果放回地面的时间,从而大大提高了机器人的采摘效率。
当然,本设计的也还存在一些不足。如缺少在自然环境中的测试,还不能很好的利用到现实生产过程中。机械臂的设计有些过于简单,有待进一步优化。
随着矿山设备的发展,矿用车辆轮胎机械手也不断更新发展,逐渐向大型化,自动化方向发展,这给轮胎机械手的设计带来了诸多的挑战和难题。设计一种能够代替人力,操作简单,安全实用,适用于大型轮胎拆装、搬运需求的设备成为当务之急。这有利于提高生产效率,降低劳动强度,保证作用安全。研究表明85%的轮胎机械手的破坏发生在连杆机构,这种破坏主要是连杆机构在动态载荷下发生的疲劳失效或者应力屈服破坏。为了解决轮胎机械手连杆机构的破坏难题,本文将对该连杆机构进行动态应力仿真,考场连杆机构在动态载荷的作用下连杆所发生的变化,并提出连杆机构的优化设计方案。
1、轮胎机械手发展状况
国外的轮胎机械手的发展已经十分成熟。第一台轮胎机械手由美国佩蒂伯恩公司生产的Super 20型轮胎夹装机,该机械手具备更换运输卡车和重型设备轮胎的作用,还可以当做叉车使用;该设备显著的特点是高效,大量减少劳动量。改型轮胎机械手主要由以下几个部分组成:前伸式夹持装置,四轮驱动装置,四轮空气制动装置和一台GM型柴油机组成。该装置的最大夹持承载能力在伸出时为4309kg,缩回时为6804kg,夹持装置能够向两侧转动45°,叉架能够左右移动127mm,以准确完成轮胎的定位。此装置能够平稳的夹起轮胎,并将轮胎准确的定位在轮毂螺栓上。
同国外相比,国内轮胎机械手发展起步比较晚,还处于生产小型轮胎拆装机阶段,对于大型轮胎拆装设备的研发还很少。广西柳工集团生产的ZL40B型装载机,使用规格为20.5-25的轮胎,充气后质量为0.4t,最大直径为1.55m。该型装载机的工作机构可以完成动臂的提升和铲斗的旋转动作。拆下铲斗,在动臂斗销的位置上安装水平放置的两只夹持臂。两只夹持臂由液压缸提供动力,可以实现张开和闭合动作。这样,装载机自身动臂的提升、铲斗的旋转外加夹持臂的开合动作就可以满足轮胎拆装的需求,具有操作方便、结构简单、安全可靠等优点。
2、ADMAS软件的介绍
ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。
3、轮胎机械手结构组成
轮胎机械手的主要功能是实现矿山大型车辆轮胎的拆装和搬运。动力源为液压缸,并要求液压动力在适当的荷载下运作,才能使液压工作件高效、平稳、准确的完成液压元件的各项操作动作;而且液压动力源的各项操作可以通过电液伺服控制技术使提高该系统的自动化控制水平。轮胎机械手可以安装在装载机或叉车上,利用装载机和叉车可以将物体举高的现有动作实现垂直地面方向的移动,轮胎机械手自身可以完成对轮胎的夹持、水平移动和两个方向的翻转动作以满足大型轮胎的拆装和搬运过程中所需的各种动作。轮胎机械手执行机构大致由手盘、手臂、转动架、平动架和固定板组成。
4、轮胎机械手工作原理
轮胎机械手的执行是通过手臂上的两支液压缸的伸缩,产生一定的夹紧力同时对两支手臂同步完成手臂的张开和闭合动作,其中最大的夹紧重量为5900kg,夹持距离为1092mm~4060mm;另外手臂上的手盘能够在360°的范围内带动负载以额定转速旋转,旋转力矩和要求转速由安装在手臂的液压马达经过减速器产生,要求旋转过程不能发生打滑现象;同样转动架以2r/min的转速旋转360°,且旋转所需的力矩是由安装在平动架上的液压马达提供;而平动架在水平左右移动所需的动力又安装在平动架和固定板之间的平动液压缸提供,并且可以在300mm的范围里移动;最后,整个装置由固定板安装在装载机或叉车上。
5、动态应力仿真
由研究表明,85%的轮胎机械手主要在连杆机构处发生破坏,而破坏的原因主要是因为动载荷受力不均匀,导致连杆机构疲劳失效和破坏。针对连杆机构的在动载荷下的破坏,探究杆件在受到动载荷时杆件的应力情况。动态应力仿真的步骤是:首先建立轮胎机械手的虚拟样机模型;然后导入到动态分析软件ADAMS中,对样机模型进行约束、驱动使模型模拟整个机械手的运动;最后在ADAMS中记录模型在受到动载荷下,模型的运动状况以及杆件所产生的动态应力。
通过动态软件ADAMS仿真可以直观的轮胎机械手的动作过程,通过修改参数可以看出该机械手的连杆机构在不同载荷下所受到的动应力,根据该动应力的情况设计合理的连杆机构,同时对改进轮胎机械手提供了依据。同时仿真模型和运动过程参数可以为整个机构的优化提供理论依据,继而为快速、准确方便的设计和制造物理样机奠定基础。
同国外相比,国内轮胎机械手发展起步比较晚,还处于生产小型轮胎拆装机阶段,对于大型轮胎机械手的研发还很少。主要原因是国内轮胎机械手的设计中,很少考虑连杆机构在动态载荷下的应力变化情况,在对轮胎机械手的改进和研究过程中我们要充分考虑动态载荷情况,根据动态载荷运用动态仿真软件来模拟其实际情况,这样能节约成本,缩短开发周期。
参考文献:
1无氧浇注技术
钢水从盛钢桶注入中间罐、或者从中间罐注入结晶器的过程中,不可避免地要与空气接触而发生氧化反应和吸收气体。如果不采取措施,即使连铸钢水经过了各种处理,钢水的纯度很高,也还是会前功尽弃,结果往往在铸坯、钢板和成品加工过程中出现种种表面或内部缺陷,使钢坯的机械性能变坏。因此,在连铸过程中必须使钢水与空气隔绝,这就是无氧浇注技术。
长水口机械手机构就是通过各种动作把长水口的上端与大包滑动水口相接,下口伸入中间罐钢水内,从而使钢水流通过长水口注入中间罐,用长水口将注流与空气隔绝。。为了防止从上水口与大包滑动水口的连接处吸入空气,选用Ar气体密封。这也是无氧浇注中大包与中间罐之间保护形式的一种,是品种钢浇铸的必要技术。
2改造前长水口机械手的工作条件和应用状况
某钢厂连铸用钢包自重130吨,公称容量为300吨,最大容量为325吨。最大容量时钢水高度为4707mm。
图1
钢水液比重6.8t/m3,上口直径φ4623mm,钢水罐总高5445mm,净空高度504mm(300吨时)吹氩压力4kgf。耐材自重93-100kg。液压系统工作压力100-150bar,最大压力210bar。液压缸主要参数为φ50/φ28,行程200,由于液压缸的位置限制不能使水口向上抬的很高,虽然能够降得很低,但不能有效地利用行程,不能满足大包升降的机械要求。液压系统的工作情况如图1所示。现有机构无法安全牢靠的把持长水口,经常中断连铸的顺利进行,无法保证炼钢质量。
3长水口机械手的结构特点
长水口机械手的升降运动包括配重控制和液压阀块控制;在回转机构上有依靠人工操作和利用蜗轮蜗杆减速机传动两种方式。配重式机械手在操作过程中笨拙、沉重且不能有效的保证长水口需要的预紧力。现在的长水口机械手设计常采用液压控制,利用铸机主泵站供油,选择在系统压力范围内有效工作的液压缸,不必配置独立的液压站。在机械臂的支撑上有一点支撑和通过旋转臂两点支撑这两种支撑方式。
4长水口机械手的工作原理
4.1液压缸的设计依据
长水口机械手的升降动作主要依靠液压缸的动作来完成。液压缸可分为有杆腔工作和无杆腔工作两种情况,无杆腔进油推力大速度小,有杆腔进油推力小速度快。或者说在同样负载下,无杆腔进油需要的压力小,有杆腔进油需要的压力大。
根据长水口机械手的工作要求,现场需要动作的范围进行设计,为某钢厂改造的该机构工作位置如图2所示。
图2
O点为液压缸的支点,A点为液压缸最短行程位置,C点为最大行程位置,通过力距的分解与计算,可以选择一定行程的液压缸,保证机构升降需要达到的位置。通过分析可知,图示位置和行程完全可以提起所要求的角度。。该机构是可靠的。
4.2回转机构设计
回转机构采用下置式蜗轮减速机,传动比40:1。。根据输出轴轴端许用负载选择蜗轮轴的转速及额定转矩。
输出轴轴端径向许用负荷FR=FL·R(其中FL为速度系数,R为径向载荷系数)
输出轴轴端轴向许用负荷FA=FL·A(其中FL为速度系数,A为轴向载荷系数)
蜗轮减速机在启动机器之前,要正确加注蜗轮减速机专用油N220-N680,不能使用其他油。新减速机第一次使用时,经运转7~14天(150~300小时)的磨合期后,必须更换新油。使用至三个月时必须第二次更换新油。在以后的使用过程中,应定期检查油质,必须随时更换含有杂质、污染,或已分解、老化的变质油品,确保减速机的使用性能,从而保证长水口机械手机构灵活、安全的回转。
5、使用状况
该长水口机械手机构在现场使用过程中转动灵活,操作简单,工作可靠,达到了钢厂的使用要求。
根据某钢厂板坯浇铸机生产实绩统计,在钢包与中间罐间敞开浇注,中间罐内钢水平均增氮20ppm;采用长水口密封浇注,平均增氮约12ppm;在长水口顶部与滑动水口连接处通过Ar密封,钢液增氮平均仅为2ppm。
中图分类号: TP241.2 文献标识码:A 文章编号:1674-0432(2010)-10-0120-1
四自由度采摘机械臂可以看成是由一系列通过活动联接连接起来的杆件组成的。
1 三维空间中的附体坐标系和总体坐标系
为了便于处理机械臂复杂的几何参数,机械臂各杆件的运动可在总体坐标系中描述,在每个杆件处建立一个附体坐标系。运动学问题便归结为寻求联系附体坐标系和总体坐标系的变换矩阵。如图1所示,参考坐标系Oxyz是三维空间中的固定坐标系,在机械臂运动学中将其作为总体坐标系,把Ouvω看成是附体坐标系。
图1 总体坐标系和附体坐标系
2 建立附体坐标系和总体坐标系的规则
Denavit和Hatenberg(1955)提出了一种为关节链中的每一杆件建立附体坐标系的D-H矩阵方法。对于每个杆件来说,在关节轴处可建立一个正规的笛卡儿坐标系(xi,yi,zi),i=1,2,3,4,再加上机座坐标系。建立在关节i+1处的坐标(xi,yi,zi)是固联在杆件i上的。当关节驱动器推动关节i时,杆件i将相对于杆件i-1运动。机座坐标定义为第0号坐标(x0,y0,z0),它也是机械臂的惯性坐标系。确定和建立每个坐标系应根据下面3条规则:
(1)zi-1轴沿着第i关节的运动轴;
(2)xi轴垂直于zi-1轴和zi轴并指向离开zi-1轴的方向;
(3)yi轴按右手坐标系的要求建立。
按照这些规则,第0号坐标系在机座上的位置和方向可任选,只要z0轴沿着第1关节的运动轴运动。
3 四自由度采摘机械臂坐标系的关系参数
根据上述坐标系的定义,描述四自由度采摘机械臂相邻坐标系之间的关系可归结为如下4个参数:
θi 绕zi-1轴(右手规则)由xi-1轴向xi轴的关节角;
di 从第i-1坐标系的原点到zi-1轴和xi轴的交点沿zi-1轴的距离;
ai 从zi-1轴和xi的交点到第i坐标系原点沿xi轴的偏置距离;
αi 绕xi轴(右手规则)由zi-1轴转向zi轴的偏角。
对于四自由度采摘机械臂来说,di,ai,αi是关节参数,θi是关节变量。根据上述三条规则以及各参数的解释,可以求得四自由度采摘机械臂的四个参数,结果见表1。
4 循环法建立坐标系
除了上述D-H矩阵方法以外,也可以通过以下6个步骤为四自由度采摘机械臂建立一组相容的标准正交坐标系。
(1)建立机座坐标系。在机座上建立右手正交坐标系(x0,y0,z0),使z0轴沿关节1的运动轴,x0和y0轴与z0垂直,但方向可任选;
(2)初始化和循环。对每一个i,i=1,2,3,完成步骤(3)至(6);
(3)建立关节轴。把zi轴与关节i+1的转动轴对准;
(4)建立第i个坐标系的原点。将第i个坐标系的原点放在zi和zi-1轴的交点处,或放在它们的公垂线与zi轴的交点处;
(5)建立xi轴。使xi=±(zi-1×zi)/||xi=±(zi-1×zi)/||,如果zi-1与zi平行,就使xi沿它们的公垂线;
(6)建立yi轴。令yi=±(zi×xi)/||zi×xi||,使(xi,yi,zi)成为右手坐标系。建立好的坐标系如图2所示。
图2 四自由度采摘机械臂连杆坐标系
参考文献
[1] 朱梅.具有五自由度及张合气爪的液压机械手[J].机床与液压, 2006,1:96-97.
[2] 毕诸明.六自由度操作手的逆运动学问题[J].机器人. 1994,3(16):92-95.
[3] 高锐.草莓收获机器人的初步研究[D].中国农业大学硕士学位论文,2004.
1 圆盘式刀库大端面刀换刀问题分析和设计
首先,圆盘式刀库换刀只需要将目标刀与主轴到交换,它不同与斗笠式刀库必须处理还刀,所以为缩短换刀找刀时间可用T码命令先让刀库备好刀,程序执行到换刀名令时直接就可以进行换刀动作。程序T码控制刀盘将目标刀找到并将到套倒下来。当程序遇到M06命令时,Z轴回到第二参考点主轴准停定位->机械手刀臂旋转抓刀->气缸松刀->刀臂旋转换刀->汽缸紧刀->刀臂回原点->换刀完成。
其次,随机找刀、机械手换刀控制基本原理:Txx代码激活刀库控制。PLC根据编程刀具号计算出该刀具所在的刀套位置,以及就近找刀的方向。位置通过PLC指令[S.ATC K1]方向寻找,通过指令[S.ROT K1]寻找。由PLC程序控制刀库按就近方向转动到编程刀具所在的位置,等待换刀。最后,M06启动PLC换刀,换刀过程说明:步骤一:刀套倒刀;步骤二:机械手扣刀;步骤三:主轴松刀;步骤四:机械手交换刀具;步骤五:主轴紧刀;步骤六:机械手回原点;步骤七:刀套回刀,换刀步骤通过PLC程序控制,刀具交换通过[S.ATC K4]指令。
2 大小刀的换刀控制的分析研究
由于用户在使用机床时常会用到端面飞刀等大直径的刀具(简称大刀),这些刀具装入刀库后左右相临的刀套内就无法放入刀具。圆盘式(机械手)刀库采用的是随机换刀,刀具所在的刀套并不固定,如果换大直径的刀就有可能和相临的刀具发生碰撞,所以PLC需要对此种情况进行处理。PLC程序设计思路和解决方法:要解决此问题最关键的就是要让大刀两侧的刀位空出来,当换刀时首先把大刀放入两侧是空刀的刀套里。本次设计的刀库为24把刀的圆盘式刀库,由于大刀要占用左右的刀套位,极限情况下24位可以装下11把刀,但由于实际使用中几乎不会要使用到如此多的大刀,故本次设计最大大刀容量为9九把(可修改成11把)刀库容量也可以增加。PLC定义T0~T24为小刀刀号,T51~T59为大刀刀号,刀套空位为99。刀号的设定须在刀库登录表里,刀库登录表根据实际使用情况设置。特别注意:允许的大刀最大直径必须小于刀库允许普通刀具直径的的两倍(目前使用的刀具都小于允许直径的两倍),否则大刀与大刀之间交换会发生碰撞,刀具重量不能超过刀库允许重量。大刀交换规则:小刀可放进大刀的刀套内,大刀不可放进小刀刀套内。换刀情况分析有以下四种:主轴小刀和刀库小刀交换,一次性换刀;主轴小刀和刀库大刀交换,一次性换刀,主轴小刀放进大刀刀套中;主轴大刀和刀库小刀交换,先将原大刀刀套中的小刀换到主轴上,在将小刀与小刀交换;主轴大刀和刀库大刀交换,一次性换刀。换刀相关保护和报警①换刀前判断刀臂是否在原点,否则报警不执行换刀。②刀套和打刀缸的动作受到PLC监控,超出时间会发出报警,终止换刀。③检查刀库表中刀号与主轴刀号是否重复,发出报警信号。④大刀换刀时检查大刀刀套两侧是否为空刀位,如果不是则发出报警,终止换刀。⑤检查当前刀套内的刀号是否是空刀位,是则不进行换刀,发出报警。换刀刀号判断PLC说明。通过D60中的T码与K实数进行比较,把比较的结果送入M1000~M1008。利用比较的结果M1000~M1008判断目前换刀的状态,将结果送入M600~M603。M600:T码小刀与主轴小刀交换;M601:T码小刀与主轴大刀交换;M602:T码大刀与主轴小刀交换;M604:T码大刀与主轴大刀交换;通过判断的换刀状态按照PLC程序框图的方式执行。
3 结语
用户在使用机床时常会用到端面飞刀等大直径的刀具,这些刀具装入刀库后左右相临的刀套内就无法放入刀具。根据公司项目要求并兼顾成本和机床功能,通过系统控制解决了大端面刀等大直径刀具的换刀问题,为客户提高生产效率,从而提高其经济效益做出了一定的贡献。圆盘式(机械手)刀库采用的是随机换刀,刀具所在的刀套并不固定,如果换大直径的刀就有可能和相临的刀具发生碰撞,所以PLC需要对此种情况进行处理。要解决此问题最关键的就是要让大刀两侧的刀位空出来,当换刀时首先把大刀放入两侧是空刀的刀套里,然后再进行换刀。在此设计中还为客户完善了使用过程中的一些辅助功能,使客户使用更方便、更安全,得到了客户的认可。通过三菱圆盘式(机械手)刀库加工中心开发过程,使我收获颇多,为了让更多人分享享我的经验所得,特写这篇论文,供大家参考学习。
[参考文献]
中图分类号:G712文献标识码:B文章编号:1006-5962(2013)02-0027-02
高职机电一体化专业课程设置的培养目标是:面向工业企业生产现场,电气控制系统制造公司、机电设备制造公司、机电设备、电气设备、工控设备制造公司或公司、科技开发公司,培养适应社会需要,全面发展,适应本专业相对应职业岗位的高等技术应用性专门人才,主要岗位群定位是自动化设备安装员、自动化设备调试员、中高级维修电工等,本专业有五个主干学科:电气工程、电子工程、机械工程、计算机科学与技术、控制科学与工程,都是为了岗位需要设置的专业知识。其中《自动化生产线安装与调试》作为一门核心专业课在第四学期进行了贯穿和综合。
1自动化生产线的课程设置
机电一体化专业人才培养能力有:识图绘图能力、机电安装调试维修能力、电控系统调试检修能力、自动线调试维护能力、机电设备管理能力及机电产品营销能力等。《自动化生产线安装与调试》前序课程有PLC技术、传感器技术、电机与控制,后序课程有机床维修等。在我们所要实现的教学目标中知识目标涉及到:机械手工作原理、握机械手控制原理、机械手气动原理、熟悉安全操作规程;能力目标有:对已安装的机械手机械部件进行测量;对机械手的气路进行基本调试;根据故障现象判断故障部位;检查分析、找到故障点并分析解决故障;遵守安全操作规程;素质目标有严谨的职业态度、规范的操作习惯、创新精神、团结协作精神、自主学习精神及沟通能力。
此核心课程以项目驱动教学开展课程教学,提升学生的职业能力,以具体自动化生产线为载体,融合认知、安装、调试和检测等内容,实现教、学、做、评一体化教学,突出课程的职业性、实践性和开放性。以学生为主体,采取多样化教学方法。以自动化设备改造为工作过程,涉及电路图分析、电气图设计、程序设计、设备组装、设备运行调试、设备检测、设备维护等行动领域,设置六个学习情境:零配件拆装、传感器检测、气路检测、异步电机检测、步进电机检测、整体检测调试,分成20个任务。
项目一:供料站的安装,有机械拆装、气路拆装、电器拆装三个任务;项目二:加工站的安装,设计任务有加工站组装、光电传感器检测、限位传感器检测三个任务;项目三:装配站的安装,设计任务有装配站组装、电磁阀检测、气缸检测三个任务;项目四 :分拣站的安装,设计任务有分拣站组装、传送带的检测、异步电机的检测、变频器的检测四个任务;项目五:输送站的安装,设计任务有输送站组装、光纤传感器检测、机械手检测、步进电机的检测、溜板检测四个任务;项目六:整体运行调试,有PLC控制网络构建、程序编写、综合调试三个任务。
2自动化生产线的教学方法与评价设计
2.1教学方法。
(1)讲授法:讲解项目任务,传授项目任务相关的知识点,针对学生实施过程中出现的不足进行知识点的说明。
(2)现场教学法:在符合生产要求的工作环境中进行操作技能和维修应用能力实践,提高职业氛围,在工作过程中提升学生的职业道德、职业素养和岗位适应能力。
(3)任务驱动法:将教学过程融入项目任务中,让学生自主讨论分析实施,学生在工作过程中得到知识。
(4)小组讨论法:学生每六~八人为一个小组,小组讨论分析,讨论解决,分工协作完成项目任务。
六步教学实施:明确任务、讨论分析、制定方案、检测故障、检验效果、总结分析。老师交代目标,注意观察和记录小组对现象分析情况,解答学生提出的问题,对跟主题分析偏离太远的小组予以引导,让学生自行摸索,在后期对学生可能会引起事故或损坏设备和工具的异常操作给予纠正,最后老师组织小组进行故障排除工作汇报,互评,并对每组进行考核评价,再引导学生自行总结。
2.2评价设计。
课程采用过程考核与期终考核相结合、企业考核与校内项目考核相结合、教师考核与学生考核相结合的多元化考核方式,利于理论联系实际,有利于学生的学习创新和思考,更督促他们到实际中去发现和改进,去寻找合适自己的项目和课题。
课程考核为:校内项目,企业,综合实训三大类。当堂课的考核有:教师考核、小组互评、小组自评;教师考核内容为五项:任务分析情况,实施方案制定,任务完成质量、分工协作精神、故障检测手段、安全操作规范、小组总结。
和很多专业课一样,多种教学方法和全面的评价方案,有效保证了教学效果。
3相关课教学
3.1电机与电气控制的教学。
本课程以发电机为主题,以工作任务为导向,以工厂实用型电气控制系统设计、安装、调试与维护情景教学为主线贯穿全课程,用实物进行直观性教学,使学生感性认识强,理性认识够。
典型的教学任务有三相异步电动机全压启动、三相异步电动机长动控制、三相异步电动机正反转控制、三相异步电动机延时启动控制(或三相异步电动机Y-降压启动)、机械手控制等。
课程特色是学生充分利用所学知识、网络资源、闲瑕时间作为期三个月的“继电控制课程设计”。任务书要求能够根据功能要求选择个元器件的类型及其型号;了解个元器件的工作原理和使用方法;把各元器件连接起来实现本课程设计的要求。设计内容和要求:两台电动机都存在重载启动的可能,任何一级传送带停止工作时,其他传送带都必须停止工作,控制线路有必要的保护环节,有故障报警装置。课程设计书要有课题介绍、题目、摘要、总体方案设计、设计目的、控制要求、设计要求、 硬件选型、主电路原理图的设计、 控制电路原理图的设计、重载保护电路设计、欠压保护电路设计、总结。
3.2PLC教学。
PLC是可编程序逻辑控制器(Programmable Logic Controller)的简称,早期是一种开关逻辑控制装置,随着计算机技术和通信技术的发展,其控制核心采用微处理器,功能有了极大扩展,除了最广泛的取代传统的继电器-接触器控制的开关量逻辑控制外,还有过程控制,数据处理,通信联网与显示打印,PLC接口采用光电隔离,实现了PLC的内部电路与外部电路的电气隔离,减小了电磁干扰。
PLC有5种编程语言:
(1)顺序功能图(SFC)。
顺序功能图常用来编制顺序控制类程序,包含步、动作、转换三个要素。顺序功能编程法是将一个复杂的控制过程分解为小的工作状态,这些状态按顺序连接组合成整体的控制程序。
(2)梯形图(LD)。
梯形图沿袭了继电器控制电路的形式,是在常用的继电器、接触器逻辑控制基础上简化了符号演变而来的,形象、直观、实用,电气技术人员容易接受,要求用带CRT屏幕显示的图形编程器才能输入图形符号,是目前用得最多的一种PLC编程语言。
(3)功能块图(FBD)。
功能图编程语言是用逻辑功能符号组成的功能块来表达命令的图形语言,与数字电路中的逻辑图一样,极易表现条件与结果之间的逻辑功能。
(4)指令表(IL)。
采用经济便携的编程器将程序输入到可编程控制器就用指令表,使用的指令语句类似微机中的汇编语言。指令表程序较难阅读,其中的逻辑关系很难一眼看出,所以在设计时一般使用梯形图语言。如果使用手持式编程器,必须将梯形图转换成指令表后再写入PLC,在用户程序存储器中,指令按步序号顺序排列。
(5)结构文本(ST)是文字语言。
编程语言的学习是PLC教学的一项重要内容,中间加以不同的应用实例:顺序控制电路、常闭触点输入信号的处理,使用多个定时器接力定时的时序控制电路、三相异步电动机正反转控制电路、钻床刀架运动控制系统的设计,LED数码管显示设计,还经常根据继电器电路图设计梯形图。
增加的学习情境还常有如下任务:洗手间的冲水清洗控制、进库物品的统计、竞赛抢答器装置设计、彩灯或喷泉PLC控制;寻找数组最大值并求和运算、电热水炉温度控制等。
3.3单片机。
单片微型计算机就是将CPU、RAM、ROM、定时/计数器和多种接口都集成到一块集成电路芯片上的微型计算机。用于示波器、报警系统、移动电话、彩电等日常方面,在智能仪器仪表、工业控制、家用电器、计算机网络和通信领域、医用设备领域、工商,金融,科研、教育,国防航空航天等领域也都有广泛应用。
数据大都在单片机内部传送,运行速度快,抗干扰能力强,可靠性高,微型单片化集成了如看门狗、AD/DA等更多的其它资源。教学内容以80C51为核心讲授单片机的的引脚、存储器组织结构、典型语句,以实例应用为线索:单灯受控闪烁、P1口外接8只LED发光二极管模拟彩灯、单片机做加、减、乘、除运算等项目。各子任务都作硬件电路及工作原理分析、主程序流程图设计、源程序的编辑、编译、下载、单片机的I/O接口分配及连接。
教学采用ISP-4单片机实验开发板,可以完成大量的单片机学习、开发实验,对学习单片机有极大的帮助。该板采用在线可编程的AT89S51单片机,有程序下载功能,可将编辑、编译、调试好的单片机代码下载到AT89S51单片机中。
3.4变频器技术及应用。
变频技术让学生熟练掌握各种电力电子器件的工作原理、主要参数、驱动电路与保护技术;掌握交-直-交变频器、交-交变频器、谐振型变频的工作原理和应用范围;掌握脉宽调制控制、矢量控制和直接转矩控制等先进技术;了解变频器与感应电动机组成变频调速系统、变频器与双馈电机组成调速系统、变频器与同步电动机组成变频调速系统,掌握电力电子电机系统的组成、工作原理、控制方法、运行特性等,是强电应用和现代技术推广的有力体现。
3.5传感器与自动检测技术。
传感器技术代替人的感观,在各种环境下应用,检测技术是一套有效的反应体系,包括信息的获得、测量方法、信号的变换、处理和显示、误差的分析以及干扰的抑制、可靠性问题等。因此掌握常用传感器的工作原理、结构、性能,并能正确选用,了解传感器的基本概念和自动检测系统的组成,对常用检测系统有相应的分析与维护能力。对工业生产过程中主要工艺参数的测量能提出合理的检测方案,能正确选用传感器及测量转换电路组成实用检测系统的初步能力。
教学过程进行小论文制作,让学生提高计算机应用水平,使学生从文字处理水平提高到办公处理水平。对分节、目录、文献标识作严格要求。题目如数字显示电子称、基于霍尔传感器的转速表、单片机电子秤研究、光纤测温仪、烟雾报警器、小车寻迹设计、电熨斗自动恒温系统、电涡流探伤、电感测厚仪等。
4毕业论文指导分析
毕业论文专业联系实际,通常小型自动化系统以单片机为主,大型自动化生产线以PLC为主,系统运行动力离不开电机,观察离不开传感器,调速可用变频器,综合所学,学生的论文涉及广泛,有效教学可对应从如下方面侧重指导。
4.1立意选题。
根据实际和研究方向做好侧重和体现,如“触摸屏控制的碱液配置系统”和“两种液体混合装置的PLC控制系统”的系统性和方向性,“车库自动门的PLC自动控制”和“测速雷达信号处理系统”的检测指标要求等。
4.2材料整合。
在任务要求明确的基础上,首先确定相关技术指标,对应查找并列出论文结构,一份毕业论文至少含有三到五门课的内容,对应于研究方向进行相应编排和取舍。
4.3技术处理。
所搜集图片的背景往往有水印,要去掉,图片按要求进行不同方向的剪切。图表里的文字应是五号或小五,注意表格标题要单独标出等等格式要求。流程图、梯形图的设计与表现。
多种教学方法和理论联系实际教出具有学习能力和创新能力的学生,系统的学习与应用创造练就出具有竞争力的学生,专业课的有效教学和毕业论文的顺利设计将显示本专业沉甸甸的含金量。
参考文献
[1]吕景全.《自动化生产线安装与调试》,中国铁道出版社,2010年7月
[2]马玉春.《电机与电气控制》,北京交通大学出版社,2011年1月
1引言
近年来,各国为达到提高系统的定位精度以适应工业需要,尝试了各种控制方式和控制策略,并对气动伺服系统做了大量工作。当临时需要对各个单元进行新的分配任务或产品变化时,可以很方便的改动或重新设计其新部件,当位置改变时,只要重新编程,就能很快地投产,从而降低了安装和转换工作的费用。模块化生产培训系统(MPS,ModularProductiontrainingSystem)是一种模拟自动化生产加工单元,它由德国FESTO公司结合现代工业企业的特点开发研制而成。它可以大量代替单调往复或高精度的工作,用以满足前沿产品和自动化设备更新的需要。本文所研究的内容,国际上以德国、日本、韩国等最具代表性,技术上已经趋于成熟,但其产品价格昂贵,且在技术上对用户封锁,致使用户无法结合自己的需要进行二次开发。
目前,国内已有几家教学设备生产企业开始仿造国外的MPS部分产品,主要有上海英集斯自动化技术有限公司生产的“MPS/FMS模块化生产培训系统”;浙江亚龙教仪有限公司生产的“亚龙YL-MPS模块化生产培训系统”。本文将采用上海英集斯自动化技术有限公司生产的MPS教学设备,结合本实验室(国家示范性中央财政支持重点建设实验室)的实际需求,给出了基于PLC的MPS上料检测单元PLC控制系统设计的完整解决方案。
2上料检测单元的结构、功能与气动控制回路
上料检测单元可作为MPS系统中的起始单元,向系统中的其它单元提供原料。
2.1上料检测单元的结构、功能
上料检测单元主要由I/O接线端口、料盘模块、气源处理组件、工件检测组件、提升模块等部件组成。它的具体功能是:将放置在料盘中的待加工工件按照需要自动地取出,并检测出工件的黑白颜色,最后将其提升到输出工位,等待下一个工作单元来取。
2.2上料检测单元的气动控制回路
上料检测单元的执行机构是气动控制系统,其方向控制阀的控制方式为手动控制或电磁控制。在上料检测单元的气动控制原理图中,1A为双作用提升气缸;1Y1为双作用气缸电磁阀的控制信号;1B1和1B2为磁感应式接近开关。气动控制回路如图1所示。
图1上料检测单元气动控制回路
3基于PLC的MPS上料检测单元控制系统的设计方案
基于PLC的MPS上料检测单元控制系统的控制任务设计:接通设备电源与气源、运行PLC后,首先执行复位动作,即提升气缸驱动的工件平台下降到位。料盘旋转输出工件,当料盘检测到工件平台中有工件后停止旋转,提升气缸动作,将工件平台提升至输出工位,检测工件的颜色并保存下来。按下“特殊”按钮,表示工件被取走。随后工件平台下降到位,料盘继续旋转输出工件,重复以上流程。
下面介绍该方案的关键环节。
3.1分配上料检测单元PLC输入输出地址
PLC的输入输出与执行机构的对应关系如表1所示。
表1上料检测单元PLC输入输出与执行机构的对应关系
3.2编写程序并调试
上料检测单元的手动控制程序框图如图2所示。
图2上料检测单元的手动控制程序框图
上料检测单元的PLC梯形图程序如图3所示。
图3上料检测单元的PLC梯形图程序
经调试,该程序能顺利完成本单元的控制任务。
4结束语
本文对上料检测单元的结构与功能、气动控制回路分别进行了详细分析,然后对上料检测单元的PLC控制系统进行二次设计与实现,首先编写了PLC输入、输出分配表,进而编写出其程序流程图及梯形图,最后上机调试,验证了基于PLC的MPS上料检测单元控制系统的二次设计与实现的可行性。并总结出两点结论:(1)在设计各单元的控制任务时,要根据各单元的基本功能,编写符合实际的控制任务,最大限度的合理开发其使用功能,但一定要符合其机械设计,否则会让设备之间发生冲突,造成元器件的损坏;(2)在设计梯形图程序时,移位指令和数据传送指令的合理配合使用,以及RS触发器指令的巧妙使用,会大大缩短梯形图程序设计时间,又会达到良好的控制效果。从而快速对上料检测单元的PLC控制系统进行二次设计与实现。
参考文献
1 工业机械手编写组编. 工业机械手-机械结构. 上海:上海科学技术出版社,1978:5-7.
2 宋旦锋. 模块化气动装卸机械手的研究与开发. 南京:南京理工大学,2004:6-8.
中图分类号: F407 文献标识码: A
1 引言
随着微电子产业的发展,微电子集成芯片在尺寸、种类、形态结构以及制造周期方面有了很大变化。由于电子行业对电子产品小型化的要求,高集成度IC一般都采用表面贴装形式。SMT(表面贴装技术Surface Mount Technology)是目前电子贴装行业里面的主流技术,被誉为电子组装技术的一次革命。当前发达国家在计算机、通信、军事、工业自动化、消费类电子产品中,几乎都采用了SMT技术。因此自主开发 SMT生产设备不仅是发展我国半导体产业的需要,也是我国国民经济健康、持续发展的迫切需求。
SMT生产线中的主要设备由滴胶机、丝印机、贴片机、回流焊机、清洗机和检测机等组成,同时还配备了如上下料机、接驳台、涂敷设备、周转设备等辅助设备。贴片机、滴胶机、丝印机和检测机是关键设备,其中贴片机是SMT生产线设备当中最关键的设备,它的技术含量最高、价格最昂贵。图1是典型的SMT工艺流程图:
图1 smt工艺流程图
Fig. 1 Smt flow chart
2 贴片机的运动控制分析
由前面的贴片机关键技术分析可知,控制技术是核心问题,也是本文要研究的主要问题。贴片机的控制问题主要是对贴片机的运动控制研究。
贴片机的发展经历了手动、半自动、全自动贴片机三个时期,目前绝大多数正在使用的贴片机都属于全自动贴片机类型。全自动贴片机是机-电-光及自动控制、计算机技术的综合应用。它通过拾取、移动、定位、贴装等功能,将表面贴装器件(SMD)快速而准确地贴装到PCB板指定的焊盘位置上。贴片机对所有元件的贴装是按顺序进行的:拾取/贴装头先移动到指定的喂料器位置上拾取要贴装的元件,再通过视觉处理系统对贴装元件进行检测和对中,最后移动到PCB板上的指定焊盘位置上贴装元件;在这一过程结束后,拾取贴装头又移动到喂料器拾取下一批元件、再进行识别、贴装操作,如此周而复始,直到所有元件都贴装完。整个流程完全由计算机控制自动完成,无需人力介入。所以,对运动控制部分的速度、精度等都提出了很高的要求。
根据生产任务在计算机上进行编程,主要任务有三项[8] :
(1) 对每个需要贴装的元器件,按照元器件轨道设置文件进行装料,并安放于分配到的元器件供料轨道上。
(2) 根据待加工PCB的宽度将贴片机传输轨道调整到相应的宽度。
(3) 依据贴片任务需要来设定吸嘴配置,进行相应的吸嘴更换。其次,等这些准备工作结束后,就进入PCB坐标识别步骤,对PCB定位处理。若该块PCB的基准点不能够被识别,就放弃贴片,并传送到输出端轨道处;若该块PCB通过视觉系统的判别,则它就被正确定位于贴片工作区。旋转头按照加工程序到相应的供料轨道上取料,然后到指定的贴片位置进行贴装。如果在贴片过程中发生故障,如元器件供料轨道、机器驱动及气路等控制有问题,机器会做出相应的报警提示。假如排故成功可继续贴片,直至完成所有的元器件的贴装,否则退出贴片作业,PCB传输到输出端轨道上。对一块PCB贴片作业完成后,自动进入下一个PCB作业循环。
3 贴片机的各轴组成和运动方式
图2 贴片机运动各轴组成
Fig. 2 Mounter movement various axes composition
表1 各轴功能表
Tablet 1 Various axes function table
各个轴需要实现的运动控制方式分为基本运动和组合运动,基本运动包括所有轴的原点复位、恒速运动、以给定的加速度,速度运动到目标位置;组合运动包括X、Y轴的直线插补运动、匀加速的之字形运动;Z、PU轴的匀加速上下运动;R、W轴的匀加速正反运动等。运动控制的种类如图3所示。
图3 各轴的运动控制种类
Fig. 3 Various axes movement control type
4 贴片头运动控制模型的建立
贴片头可以看成四个自由度的机械手,其动态特性具有高度的非线性。其驱动执行机构由伺服电动机来完成。本论文研究的贴片头驱动机构为直流伺服电机。
由于机械零部件比较复杂,例如机械部件可能因承受负载而弯曲,关节可能具有弹性及机械摩擦等等,所以在实际上不可能建立准确的模型。一般采用近似模型,在设计模型时,假设贴片头机械手各段是理想刚体,因此所有关节都是理想的,不存在摩擦和间隙。
4.1直流传动系统的建模
在建立贴片头机械手控制模型之前,我们有必要研究一下机械手运动的执行机构-直流伺服电动机的模型。
图4表示具有减速齿轮和旋转负载的直流电动机工作原理图。
图4 直流电动机工作原理图
Fig. 4 Direct current motor work schematic diagram
图中伺服电动机的参数规定如下:
―励磁回路电阻与电感;
―励磁回路电流与电压;
―电枢回路电阻与电感;
―电枢回路电流与电压;
―电枢(转子)角位移与转速;
―电动机转子转动惯量及粘滞摩擦系数;
―电动机转矩及转矩常数;
―电动机反电势常数;
―负载角位移与转速;
―减速比;
―负载转子转动惯量及粘滞摩擦系数;
首先求出电枢控制直流伺服电机传递函数。我们可以建立以下方程式子
(4-1)
(4-2)
(4-3)
式中 ,分别表示传动系统对转动轴的总转动惯量和总粘滞摩擦系数。对上述三式进行拉氏变换,则变为:
(4-4)
(4-5)
(4-6)
其等效方框图见图5。
图5 电枢控制直流电机传递函数框图
Fig. 5 Armature control direct current machine transfer function diagram
根据式(4-4)至(4-6)可以得到电动机的开环传递函数如下:
(4-7)
2.2贴片头位置控制的基本结构
贴片头的位置控制结构可以采用以下两种形式,即关节空间控制和直角坐标控制结构,分别如图6 (a),(b)所示。
图6 贴片头的位置控制基本结构
Fig. 6 Mount-header the position control basic structure
在图(a)中,是期望的关节位置矢量,别是期望的关节速度矢量和加速度矢量,是实际关节位置矢量和速度矢量。是关节驱动力矩矢量,是相应的控制矢量。
在图(b)中,是期望的工具位姿,其中表示期望的工具的位置,表示期望的工具的姿态。,其中是期望的工具线速度,是期望的工具角速度,是期望的工具加速度,是实际的工具位置和工具速度。
本文采用第一种控制结构来研究和设计贴片头的控制系统。这种控制结构的期望轨迹是关节的位置、速度和加速度,因而比较容易实现关节的伺服控制。
参考文献
[1] 徐大林.表面贴装工艺(SMT),其趋势和未来[J].电子器件,1999,22(2):104-109.
[2] 罗磊,王石刚.表面贴装关键技术综述[J].组合机床与自动化加工技术,2003,2:70-72.
[3] 滕应杰.面向21世纪的表面安装技术[J].电子工艺技术,1999,20(6):253-255.
[4] 鲜飞.表面贴装技术的新发展[J].电子元件与材料,2002,21(5):31-34.
[5] 王晓黎,白波.表面贴装领域中的可制造性设计技术[J].电子工艺技术,2005,25(3):115-118.