计算机大数据论文汇总十篇

时间:2022-10-08 11:05:23

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇计算机大数据论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

计算机大数据论文

篇(1)

二、大数据时代背景下的教学策略

(一)营造适合学生全面发展的软硬件环境信息时代的发展使得高职院校图书馆和数据中心具备了大数据的特征。科学研究和科技创新越来越依赖于对数据的管理和利用,打造良好、适宜的软硬件环境是提高职业院校学生信息素养的基础。目前互联网技术及应用普及度较高,建设智慧校园可为学生提供更多的接触信息资源的机会。加强高职院校数据中心和网络中心的建设力度,在依托传统图书馆文献存储量的基础上,增加馆藏图文电子数据、电子文献与多媒体文献,打造信息化图书馆,为学生提供多元化的信息资源与服务。加强校园社交网络平台的建设,利用微信等新型传播媒介,采用主动推送的方式传递正能量,提供有益于学生健康成长的信息,监控、屏蔽不良信息的传播,过滤影响学生身心健康的不良信息,构建适合高职院校学生学习的良好环境。

(二)发挥数字化图书馆在教育过程中的核心作用数字化图书馆的建设是图书馆业今后发展的主要方向。数字化图书馆也是一个科技含量较高的系统工程,高职院校各级领导应正确认识,加强资金投入,充分发挥其对教育过程的支持作用。数字化图书馆的典型特征是存储数字化、操作计算机化、传递信息网络化、信息存储自由化和结构连接化,可与高职院校的基础建设可以同步推进。在建设与发展过程中,教师要积极引导学生充分利用数字化信息资源。学生在使用数字化图书馆的过程中会产生一系列的行为特征数据。通过对学学习路径和学习偏好的数据分析,根据其特点与实际量身设计合理的信息资源智慧导航,从而为学生学习新技术、新知识提供个性化的服务。

(三)加强学生创新能力的培养在知识经济时代,创新决定着一个国家和民族的综合实力和核心竞争力。培养具有创新能力、实践能力的高素质技能人才,是高职院校人才培养的一个重点方向,也是高职办学的特色及亮点。创新能力培养的关键是创新思维的培养,而创新思维的核心在于思维的独特性和新颖性。在大数据时代,学生面临众多数据资源。教师需要对学生提供专业的指导,让学生学会利用互联网技术和计算机软件工具解决实际问题,在解决问题的过程中培养创新思维。高职院校应努力营造创新教育环境,结合创新教育,大力推进素质教育。将“小发明、小创造”“大学生实践技能展演”“大学生才艺展示”等活动纳入校园文化活动中。组织学生参加各行业举办的职业技能大赛,实现从应试教育向素质教育的转轨,培养实用型、创新型的复合技能人才。充分重视学生的个性发展,建立专业的师资队伍对学生的创造发明活动给予强有力的技术指导。对于技术含量高的、有市场推广价值的创造发明活动,要引导学生进行自主创业,带动就业。加大创新教育课程的开发与建设力度,强化学生创新能力的培养。

(四)培养学生对信息技术的兴趣与爱好兴趣是最好的老师,是激发学生学习积极性的动力,是激发创新能力的必要条件。学生只有对身边的事物发生了兴趣,才会活跃思维,激发潜力。在课程设计中加入了生动、形象、贴近工作、贴近生活的典型案例,可以有效地激发学生的学习兴趣,让学生乐在其中,愉快地完成学习任务。教学实践环节也应紧密围绕着学生熟悉的事物、案例来开展教学。授课教师应了解信息技术在行业的实际应用状况,根据不同专业的特点,结合学生,的知识体系结构精心准备授课内容,确定课程的重难点。在教学过程中,通过师生互动了解学生对课程内容的掌握程度,因材施教、精选案例、突出重点,从培养学生兴趣与爱好入手,让学生在轻松、愉悦的课堂教学中学习信息技术在专业领域的最新应用,了解最新的前沿学科理念,学握较新的实用技术。教师如果在教学活动中能及时、准确地解决学生在学习实践中遇到的疑难,并指导他们完成实训内容,将有助于学生在学习过程中获得成就感,激发学习的积极性、主动性和创造性。教师动手实践能力将使得更多的学生得到有效指导和帮助,实现高质量的课堂教学。

(五)探索高效教学模式根据高职人才培养目标的要求,计算机课程的教学需要与时俱进,随着各行业大数据产业的不断发展与应用而不断进行调整、创新。通过对学生在校期间学习、生活的轨迹进行搜集、整理,形成基础数据,进而分析他们的学习行为、学习喜好和思维模式,制定适合他们全面发展的教学方法,有针对性地培养和提高他们的计算机应用能力。利用各种辅助软件,开展行之有效的教学实践活动,让学生在“做中学,学中做”。提高各专业学生的计算机应用操作能力,使他们掌握互联网技术、计算机信息技术、电子商务等。以医学影像技术专业为例,学生既要学会影像阅片操作,又要掌握最新的X线机、CT、MRI等先进检查设备的使用与操作。如果能够将医学影像技术专业与计算机应用实践教学相结合,找出两者的学科交叉点,构建适合时展需要的复合型人才培养模式,将会起到事半功倍的作用。在大数据的背景下,各行各业都需要利用信息技术,特别是数据库技术、大数据分析技术,用以改变生产、经营、管理、工作、生活等的方式。因此各专业的毕业生都面临着行业对大数据的使用与开发的迫切需求。培养学生解决问题的实际操作能力,显得尤为重要。在专业课程的教学中,通过对大数据的应用与计算机应用技术的渗透,不但能激发学生学习专业技能的积极性,而且可以引导学生形成应用计算机解决专业问题的思维模式,对他们将来适应大数据环境下工作具有积极的引导意义。以专业培养目标为基础,合理对计算机课程进行设置与安排教学,将大数据知识、信息技术知识、计算机应用知识融入到各课程的教学中,构建适合高职类学生学习特点的高效教学模式。

篇(2)

专业

计算机科学与技术

学生姓名

杨宇潇

学号

181719251864

一、 选题的背景、研究现状与意义

为什么大数据分析很重要?大数据分析可帮助组织利用其数据并使用它来识别新的机会。反过来,这将导致更明智的业务移动,更有效的运营,更高的利润和更快乐的客户。

在许多早期的互联网和技术公司的支持下,大数据在2000年代初的数据热潮期间出现。有史以来第一次,软件和硬件功能是消费者产生的大量非结构化信息。搜索引擎,移动设备和工业机械等新技术可提供公司可以处理并持续增长的数据。随着可以收集的天文数据数量的增长,很明显,传统数据技术(例如数据仓库和关系数据库)不适合与大量非结构化数据一起使用。 Apache软件基金会启动了第一个大数据创新项目。最重要的贡献来自Google,Yahoo,Facebook,IBM,Academia等。最常用的引擎是:ApacheHive / Hadoop是复杂数据准备和ETL的旗舰,可以为许多数据存储或分析环境提供信息以进行深入分析。 Apache Spark(由加州大学伯克利分校开发)通常用于大容量计算任务。这些任务通常是批处理ETL和ML工作负载,但与Apache Kafka等技术结合使用。

随着数据呈指数级增长,企业必须不断扩展其基础架构以最大化其数据的经济价值。在大数据的早期(大约2008年),Hadoop被大公司首次认可时,维护有用的生产系统非常昂贵且效率低下。要使用大数据,您还需要适当的人员和软件技能,以及用于处理数据和查询速度的硬件。协调所有内容同时运行是一项艰巨的任务,许多大数据项目都将失败。如今,云计算已成为市场瞬息万变的趋势。因为各种规模的公司都可以通过单击几下立即访问复杂的基础架构和技术。在这里,云提供了强大的基础架构,使企业能够胜过现有系统。

二、 拟研究的主要内容(提纲)和预期目标

随着行业中数据量的爆炸性增长,大数据的概念越来越受到关注。 由于大数据的大,复杂和快速变化的性质,许多用于小数据的传统机器学习算法不再适用于大数据环境中的应用程序问题。 因此,在大数据环境下研究机器学习算法已成为学术界和业界的普遍关注。 本文主要讨论和总结用于处理大数据的机器学习算法的研究现状。 另外,由于并行处理是处理大数据的主要方法,因此我们介绍了一些并行算法,介绍了大数据环境中机器学习研究所面临的问题,最后介绍了机器学习的研究趋势,我们的目标就是研究数据量大的情况下算法和模型的关系,同时也会探讨大部分细分行业数据量不大不小的情况下算法的关系。

三、 拟采用的研究方法(思路、技术路线、可行性分析论证等)

 1.视觉分析。大数据分析用户包括大数据分析专业人士和一般用户,但是大数据分析的最基本要求是视觉分析。视觉分析直观地介绍了大数据的特征,并像阅读照片的读者一样容易接受。 2.数据挖掘算法。大数据分析的理论中心是数据挖掘算法。不同的数据挖掘算法依赖于不同的数据类型和格式来更科学地表征数据本身。由于它们被全世界的统计学家所公认,因此各种统计方法(称为真值)可以深入到数据中并挖掘公认的值。另一方面是这些数据挖掘算法可以更快地处理大数据。如果该算法需要花费几年时间才能得出结论,那么大数据的价值是未知的。 3.预测分析。大数据分析的最后一个应用领域是预测分析,发现大数据功能,科学地建立模型以及通过模型吸收新数据以预测未来数据。 4.语义引擎。非结构化数据的多样化为数据分析提出了新的挑战。您需要一套工具来分析和调整数据。语义引擎必须设计有足够的人工智能,以主动从数据中提取信息。 5.数据质量和数据管理。大数据分析是数据质量和数据管理的组成部分。高质量的数据和有效的数据管理确保了分析结果在学术研究和商业应用中的可靠性和价值。大数据分析的基础是前五个方面。当然,如果您更深入地研究大数据分析,则还有更多特征,更深入,更专业的大数据分析方法。

四、 论文(设计)的工作进度安排

2020.03.18-2020.03.20 明确论文内容,进行相关论文资料的查找与翻译。2020.04.04-2020.04.27:撰写开题报告 。

2020.04.28-2020.04.30 :设计实验。

2020.05.01-2020.05.07 :开展实验。

2020.05.08-2020.05.15 :准备中期检查。

2020.05.16-2020.05.23:根据中期检查的问题,进一步完善实验2020.05.24-2020.05.28 :完成论文初稿。

2020.05.29-2020.06.26 :论文修改完善。

 

五、 参考文献(不少于5篇)

1 . 王伟,王珊,杜小勇,覃雄派,王会举.大数据分析——rdbms与mapreduce的竞争与共生 .计算机光盘软件与应用,2012.被引量:273.

2 . 喻国明. 大数据分析下的中国社会舆情:总体态势与结构性特征——基于百度热搜词(2009—2 012)的舆情模型构建.中国人民大学学报,2013.被引量:9. 3 . 李广建,化柏林.大数据分析与情报分析关系辨析.中国图书馆学报,2014.被引量:16.

4 . 王智,于戈,郭朝鹏,张一川,宋杰.大数据分析的分布式molap技术 .软件学报,2014.被引量:6.

5 . 王德文,孙志伟.电力用户侧大数据分析与并行负荷预测 .中国电机工程学报,2015.被引量:19.

6 . 江秀臣,杜修明,严英杰,盛戈皞,陈玉峰 ,郭志红.基于大数据分析的输变电设备状态数据异常检测方法 .中国电机工程学报,2015.被引量:8.

7 . 喻国明. 呼唤“社会最大公约数”:2012年社会舆情运行态势研究——基于百度热搜词的大 数据分析.编辑之友,2013.被引量:4.

六、指导教师意见

 

 

 

 

 

 

 

 

签字:                  年     月    日

七、学院院长意见及签字

 

 

 

 

 

 

篇(3)

二、大数据与云计算对会计信息化的推进

(一)大数据拓展了会计信息化的资源利用范围。

随着数字化、软件和处理能力的发展,对可利用的数据的范围进行了进一步的扩大,企业必须敏感地认识到不同类型的信息通过深加工后能给企业带来怎样的财富,更要掌握哪些信息可以通过信息化技术和软件的进步来实现。大数据时代,会计信息化不再只针对会计作业上产生的数据进行分析,而且云计算是世界各大搜索引擎及浏览器数据收集、处理的核心计算方式,因此可以通过云计算将零散的数据整合在一起,提炼其有价值的信息,再将这些信息与传统的会计信息融合,挖掘被忽视的重要信息,提高会计管理决策能力和企业管理水平,这样就能从行业中脱颖而出。

(二)促进了会计信息化成本降低。

传统的会计信息化需要企业自身投入大量的基础设施建设,同时还要考虑硬件与软件的升级和维护,这方面是阻碍会计信息化发展的重要原因,特别是对中小企业的发展。而大数据与云计算融合后,用户可以根据自己的利用资源的多少和时间的长短付费,不再需要前期大量的工作和资金投入。这样,企业也能将重点放在自身的发展上,增强竞争优势。

(三)提高了会计信息化的效率。

传统的会计信息化受到时间和地域等条件的限制,这样信息交流不及时,可能错过稍纵即逝的机会,尤其是竞争激烈的大环境下,信息获取的及时性更加重要的。在大数据时代的背景下,提供云计算的会计信息化系统只需通过互联网就能随时随地的实现与客户的沟通,及时地掌握所需的信息。同时,云计算强大的计算能力,可以更快地形成所需的各项指标,管理者能更快的了解企业的经营状况并识别潜在的风险。

三、大数据和云计算对会计信息化的挑战

(一)会计信息化共享平台发展滞后。

目前,企业信息化逐步在向社会信息化发展,各企业在加工处理自己的会计信息时会形成这个行业整体的信息流。通过会计信息化共享平台,各企业可以随时知道自己的企业在整个行业或地区的地区和影响力,了解自己的强势和弱势,不断强化自己的优势并弥补自己的不足,实现动态地对公司的持续改善管理。这一平台需要在云计算的基础上发挥作用,而云计算供应商要求能够满足不同用户、不同地域和不同业务规则的需求,所以对其适应性、扩展性以及灵活性要求比较高。我国在这方面起步比较晚,国内的云计算平台建设滞后,使云会计这种新型会计信息化发展面临很大的阻碍。

篇(4)

(1)网络系统存在漏洞

在大数据时代,计算机网络发展快速,逐渐成为当今社会的重要部分,在为人们的生活提供便利的同时,也随之出现了一些计算机网络问题。网络系统中存在漏洞就是计算机网络中的一个突出问题,影响到计算机网络的运行发展。计算机网络存在漏洞,就会为黑客入侵提供便利,造成信息数据泄露,严重影响着计算机网络系统的安全。

(2)信息内容中的问题

互联网中存在着大量的数据信息,所以互联网环境存在着一定的自由性和开放性的特征。正是由于互联网中存在海量信息,病毒攻击等网络安全问题就会提升数据安全风险,以至于出现信息破坏、泄露等问题。

(3)用户操作不当

在计算机网络安全中,由于人为的恶意攻击或无已操作所引起的安全问题比较普遍。在各行业领域中,互联网都具有重要作用。但是,因为一些用户的操作水平有限,或是不了解计算机网络规范,就为不法分子提供了可乘之机,对计算机网络安全造成恶意攻击,甚至是造成他人的经济损失。这种由人为操作所引起的安全问题也是当前互联网安全问题中一个突出问题。

(4)网络安全意识淡薄

随着我们已经步入大数据时代,这就使得计算机网络得到了更深入的应用,但同样面临着更多的安全问题。人们在使用计算机网络时,没能正确认识到计算机网络安全问题,意识较为薄弱,以至于在日常操作中出现一些不规范的行为。比如,随意下载文件,没有扫描检查电脑系统安全,这些都会为计算机网络安全带来隐患,从而让黑客入侵,盗取和破坏用户的信息,对用户造成重大的损失。

二、大数据时代下计算机网络安全防护措施

(1)强化网络安全的管理

在大数据时代,为了做好计算机网络安全的防护工作,就需要强化网络安全的管理。这就需要用户在使用计算机网络的过程中,不断提高自己的网络安全意识,积极使用各种安全防护措施,以确保计算机网络环境的安全。另外,用户在使用计算机网络的过程中,需要规范自己的操作,养成文明操作的使用习惯,以尽量避免网络病毒的入侵。

(2)预防黑客攻击

在计算机网络技术的发展过程中,黑客攻击一直是无法有效解决的问题,随着计算机网络技术的愈加成熟,网络黑客也随之发展。在这个大数据时代,网络黑客就可以通过各种途径对计算机网络进行攻击,从而破坏和盗取数据信息。所以,就有必要加强计算机网络中黑客攻击的预防。可以通过数据信息,构建反黑客西永,同时加强计算机防火墙的配置,以预防计算机网路中的黑客攻击。

(3)使用防火墙和安全监测系统

计算机防火墙和安全监测系统,对计算机网络安全的防护具有一定的高效性与专业性,也是防护计算机网络安全基础、有效的方式。通过防火墙应用,就可以将管理系统分为外部管理和内部管理。其中,内部管理比外部管理有着更高的安全性,人们保存数据信息时,将其保存在内部管理系统中,从而确保用户数据信息的安全性。同时,防火墙能够实时监测外部系统,可以及时地发现和处理内部外信息安全问题。总之,防火墙是计算机网络安全防护的首道屏障,可以有效避免计算机网络系统遭受攻击。

(4)加强数据传输工具的安全性

为了确保网络信息的安全性,也要加强数据信息传输工具的安全性,从而保证网络信息的完整性与有效性。需要对一些重要的信息进行加密,不法分子就很在信息传输的过程中破解密码,从而确保数据信息在传输过程中的安全性。

(5)强化网络病毒的防御

随着互联网技术的快速发展,计算机网络给人们带来巨大积极影响的同时,网络病毒现象也逐渐严重,网络病毒攻克也是当前计算机网络安全防护中的重要内容。对于计算机网络病毒来讲,其存在着多样化、变异性的特征。这就需要我们加强病毒防范的重视,通过构建防御体系与安全管理系统,提升病毒防范的效果。还可以使用计算机杀毒软件,提升计算机系统的病毒防范性。

(6)加强计算机网络信息安全教育

在大数据时代,人们的生产活动都离不开网络信息,但绝大多数的群众并不具备较强的网络安全意识。部分用户可能通过网络随意自己的信息,一些不法分子就会泄露群众们的信息数据,从而就会为群众们带来巨大的损失。因此,加强计算机网络信息安全教育具有重要的意义。

三、结束语

总而言之,在大数据时代,随着计算机网络的快速发展,网络安全隐患也随之出现,对计算机网络用户造成了严重的影响。因此,就需要加强计算机网络的安全性,计算机用户们创建更优质的网络使用环境。以上就是本文对大数据时代下的计算机网络安全所进行的全部研究分析,针对计算机网络安全问题提出这些解决措施,以实现计算机网络安全的强化,让计算机网络为用户们提供更大的作用。

【计算机硕士论文参考文献】

[1]孙为.计算机网络安全及防范措施探讨[J].数字通信世界,2016(02):140.

篇(5)

2、计算机科学与技术的应用现状与未来趋势

3、计算机信息处理技术在大数据时代背景下的渗透

4、计算机基础课程应用教学思考和感悟

5、中职中药专业计算机应用基础教学改革实践

6、浅谈虚拟现实技术在中职计算机基础教学中应用的必要性

7、计算机图像处理技术在UI设计中的应用

8、计算机生成兵力行为建模发展现状

9、智慧档案馆计算机网络系统方案设计

10、浅谈如何提高计算机网络的安全稳定性

11、计算机应用技术与信息管理的整合探讨

12、计算机科学技术小组合作学习研究

13、计算机科学与技术有效教学策略研究  >>>>>计算机网络和系统病毒及其防范措施毕业论文

14、互联网+背景下高校计算机教学改革的认识

15、艺术类应用型本科高校"计算机基础"课程教学改革研究

16、计算机技术在石油工业中应用的实践与认识

17、计算机技术在电力系统自动化中的应用研究

18、微课在中职计算机基础教学中的应用探析

19、课程思政在计算机基础课程中的探索

20、计算机服务器虚拟化关键技术探析

21、计算机网络工程安全存在问题及其对策研究

22、人工智能在计算机网络技术中的运用

23、慕课在中职计算机应用基础教学中的运用

24、浅析如何提高高校计算机课程教学效率

25、项目教学在计算机基础实训课程中的应用分析

26、高职计算机网络教学中项目式教学的应用

27、计算机信息安全技术在校园网络的实践思考

28、大数据背景下的计算机网络安全现状及优化策略

篇(6)

21世纪以来,世界都已经进入大数据发展时代,人工智能的应用与居民生活息息相关。人工智能就是模仿人类的行为方式和思维模式进行工作处理,它比计算机技术更加具有实用价值。所以,为了迅速提高我国大数据时代人工智能在计算机网络技术中的应用,论文基于此展开详细分析探讨,深入研究人工智能在计算机网络技术中的应用价值。以下主要针对于人工智能计算机的基本内容展开简单分析与探讨:

一、人工智能计算机的概况

利用计算机技术来模仿人类的行为方式和思维模式就叫做人工智能。人工智能,技术的涵盖内容广泛,且创新性高、挑战力度大,它的发展与各学科知识包括信息与计算科学、语言学、数学、心理学等都有关联。人工智能的发展目标是通过计算机技术让本该由人工操作的危险或复杂的工作由人工智能机器代替,从而额实现节约劳动力、减少事故危害发生的情况,进而提高工作效率和工作质量。人工智能的发展形式多样。第一,人工智能可以帮助完善某些较为复杂的问题或是当前还无法解决的问题,若是发生由计算机运算都还无法获得正确模型的情况,此时就可利用人工智能来对该项问题进行有效解决,针对模糊的问题和内容,利用人工智能模式来不断提高网络使用质量。第二,人工智能可以将简单的东西或知识复杂化,得到人们想要的高级程序和数据,从而节约实现,提高工作效率。

二、大数据时代人工智能在计算机网络技术中的应用

(一)数据挖掘技术在计算机网络技术中的应用数据挖掘技术在近几年来越来越受到人们的重视,因为数据挖掘技术是大数据时展的关键技术。利用人工智能技术可研究外界不安全因素的入侵频率,并在网络安全运行的前提下结合网络存贮状态,将研究结果记录保存。之后的工作中,若计算机处于运行情况时发生安全问题,系统会立即给予警告提示,并及时拦截入侵对象。数据挖掘技术其实从根本上来看,就是由人工智能技术和大数据技术的综合发展而来,模仿人类处理数据信息的特征和方式,让计算机实现对数据的批量处理。此外,数据挖掘技术还可与各种传感器融合工作,从而实现技术功效的最大潜力,不断增强计算机系统的功效和实用价值。

(二)入侵检测技术在计算机网络技术中的应用现展迅速,网络科技已成为人们日常生活中至关重要的组成成分,给人们的生活工作带来极大便利,但是其中也潜存很多不稳定因素。所以,网络安全技术的发展是保证网络使用正常工作的重要前提。当前,已经有很多网络机制被运用到保护网络安全的工作中,但是在对网络安全管理时发现仍旧有很多不稳定因素的存在,尤其是现在网络技术的发展迅速,很多手机支付等网络支付方式中会存在支付密码泄露的情况。基于此,在网络计算机安全使用过程中起到良好作用的是入侵检测技术。该技术被使用时,可以对网络中潜存的安全隐患信息及时侦查处理,对其数据信息进行检测,最后将检测结果的分析报告反馈给用户,实现有效检测。入侵检测技术的不断发展和完善,让计算机网络的安全运行得到极大保障,在对计算机网络进行安全检测的条件下,防止网络受到外界环境的干扰。人工智能技术中还可结合人工神经系统高和专家系统网络,实现对实时变化信息的即时监控,切实保障计算机网络技术的安全发展。

篇(7)

中图分类号:G232 文献标识码:A 文章编号:1672-8122(2016)03-0105-02

20世纪80年代初,著名未来学大师及社会思想家阿尔文・托夫勒(Alvin Toffler)便预言大数据(big data)将成为“第三次浪潮的华彩乐章”。20世纪90年代以来,随着计算机技术的迅猛发展,上至国家的重大决策,下至人民生活的衣食住行,方方面面的信息均被数字化,并得到有效的储存。迈入21世纪,人类社会进入了一个大规模生产、分享和应用数据的时代――大数据时代,它强调信息技术的重点由“技术”转变为“信息”。因此,在以信息为基础的人文社会科学研究领域,大数据势必引发其组织决策和业务流程等方面的根本性变革。而为学术研究服务的科技期刊在大数据时代浪潮中,又将面对怎样的机遇和挑战呢?

一、大数据的概念与特征

大数据,又称为巨量资料或海量资料;其是由数量巨大、结构复杂、类型繁多的数据资料构成的数据集合,是以“云计算”为基础技术支持的数据处理和应用模式。大数据技术是通过集成共享数据,将分散的数据资源转变为集中的智力资源和知识服务能力。研究机构Garter定义“大数据”为需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资源。简而言之,从各种类型数据中,快速获得有价值信息的能力,就是大数据技术。

大数据的特征通常表现为以下四个方面:数据体量巨大(Volume)、数据类型繁多(Variety)、价值密度低(Value)、处理速度快(Velocity)。这就是人们通常所说的大数据的4V特征,也是大数据区别于传统数据的显著特征。

二、大数据时代下科技期刊面临的机遇

1.出版形态的多样化。大数据时代,在计算机、互联网等技术的不断发展和创新环境下,传统科技期刊的出版模式已悄然向大数据平台、多媒介及全媒体模式转型。科技期刊数据化集群建设得以实现的一个重要条件就是大数据技术的成熟与推广,随着大数据平台技术的建立,科技期刊实现了内容的自主优化、信息服务的个性化,以及出版发行模式的多元化,科技期刊将向着在线投稿及评议系统、编辑管理系统和增值服务系统一体化的方向发展。大数据期刊平台的构建将通过期刊内容推荐系统、流计算、期刊数据库和期刊信息整合与治理四大功能板块完成[1]。大多数科技期刊所采用的纸质媒介,在大数据时代背景下已不能满足读者的阅读体验,网络、无线、手持阅读器的全媒体出版要求凸显。传统纸质科技期刊传播媒介将呈多样化、全媒体的发展态势,物联网、互联网、移动智能终端等技术平台,都已成为科技期刊传播的重要媒介。科技期刊利用数字化、多媒介、全媒体的出版模式,在为读者提供平面媒体与数字媒体相结合的全新视听阅读感受的同时,也获得了更多途径和更深层次的推广效果。

2.业务流程的智能化。随着计算机技术的迅猛发展,以及云计算技术的成熟,使得任何复杂的数据都可以实现定量化分析[2]。因此,导致编辑工作流程中的信息收集、加工、传递等过程的智能化成为可能。科技期刊编辑的目标是将知识差大,且读者或该领域从业人员感兴趣的论文从众多稿件中挑选出来,体现在编辑出版过程中就是组稿策划和审稿过程[3]。而过去这一编辑流程基本依靠编辑人员的经验、价值观或学术专家提出的建议完成。而现在大数据技术将科技期刊历史出版物数据化,将全社会、全行业的科技成果数据化,并将这些数据进行整合、分析,从中获得真实、客观、准确、全面的学术信息,从而为科技期刊的选题策划、组稿及审稿提供依据。可以想象在大数据技术提供的真实、客观、准确、全面的学术信息下,那些“一稿多投”或学术不端、学术腐败的问题稿件,将无处遁形。在信息的加工过程中,大数据及云计算技术将过去编辑流程中,因编辑习惯不同或各期刊要求各异,而无统一标准的编辑规则模式转化为统一、有序的编辑规则模式。在这种编辑规则模式下,利用人工智能工具或软件,有可能实现稿件的计算机“预编辑”。从而减少编辑的重复劳动和简单劳动,提升编辑质量和编辑效率。

3.评价规则的多元化。目前,对科技期刊及论文的质量和影响力的评估,普遍采用基于文献计量学的评价体系,如影响因子和被引频次。然而,由于模拟数据时代采集的数据样本量小、种类少,导致科技期刊界对定性或定量评价的优劣争议不断[4]。大数据时代的到来解决了这一问题。通过文本分析、语义分析、专家印象评估及同行评估等方法,可以实现对科技期刊的定性评价。通过期刊影响因子动态跟踪、论文被引动态跟踪、论文浏览及下载量动态跟踪等方法,可以实现对科技期刊的动态评价。通过专家反馈信息采集、同行引用反馈信息采集、读者反馈与推荐信息采集、厂商应用效果市场反馈信息采集等方法,可以实现对科技期刊客观评价。因此,基于大数据平台的科技期刊及论文评估是定性与定量、历史与现代、静态与动态、学术价值和经济效益、主观与客观相结合的多元化、综合性科学评价机制[5]。

4.营销模式以品牌营销为主。大数据时代科技期刊的营销模式是将文化价值、创新价值、版权价值和广告价值融为一体的新型商业模式。文化价值即科技期刊的学术品牌,是科技期刊建设的最主要目标,有文化内涵、科技含量及艺术价值的品牌形象,不仅保证了科技的发展和文化的繁荣,更是吸引读者的关键,从而获得更好的经济效益和社会影响力,实现科技期刊的良性发展。创新价值即是以创新为突破口的跨媒介融合出版,利用大数据技术获取受众群体的核心信息,通过大数据分析掌握市场动向,并及时提出有创新性的营销策略,是科技期刊出版单位需要具备的专业能力。印刷时代建立的传统版权原则和制度,在大数据时代受到了根本性动摇,传统版权规则所确立的利益观、价值观,以及商业模式也被逐渐解构,特别是随着数字出版的蓬勃发展,版权资源潜在的巨大市场和价值被重新挖掘和开发。版权产业迎来了前所未有的发展机遇,版权资源成为争夺主战场,版权资源的价值亟须重塑[6]。大数据时代,出版载体已向跨行业全媒体模式转变,出版形态也更加丰富,广告形式不仅仅局限在传统期刊投放的平面广告,声音、动画、影像等多媒体形式的广告将有效地与科技期刊的主题报道内容相结合,读者在阅读杂志内容的同时,也反复接受了产品的展示与推广,加强了品牌宣传效果,真正达到广而告知的目的。

5.出版编辑理念面临的机遇。在大数据时代背景下,要求科技期刊的编辑工作从传统的文字编辑加工,转变为全媒体新出版语境下的数字编辑。数字编辑的定义是:在数字图书、数字报纸、数字期刊、网络原创文学、网络教育出版物、网络地图、数字音乐、数字视频、网络动漫、网络游戏、数字音像制品、手机出版等出版过程中,从事选题策划、组织稿件、审核把关和加工整理的专业技术人员[7]。这就要求科技期刊编辑首先从思想上树立数字编辑理念,深刻理解大数据时代,数字出版背景下编辑工作不断追求创新和数字技术应用的要求。科技期刊数字出版编辑在推广重要学术成果、传播科技文化知识、促进科技期刊发展进程中,不仅是实现期刊全媒体化的先行军,更是数字出版技术创新的开拓者。数字出版编辑应顺应数字出版的潮流,更新数字化出版的编辑理念,主动参与文化、科技成果的数据化,并积极实现数字信息的加工与传播。在读者服务方面,编辑也利用大数据技术提供的精准信息,实现对目标消费群体的个体化信息推送,提供更为精准服务。数字出版编辑要不断适应数字理念的创新,以适应大数据时代不断深化的移动互联网终端输入内容智能化的趋势[8]。

三、大数据时代下科技期刊面临的挑战

1.信息透明化导致期刊生存环境竞争激烈。通过大数据技术,所有科技期刊都将在一个更为透明的环境中生存。所有科技期刊的评价指标,都将作为公共信息,而被公之于众。例如,中国科学技术信息研究所每年都会将中国科技论文统计源收录期刊的主要计量指标,如核心总被引频次、核心影响因子、核心即年指标等,以引证报告的形式,提供给大众。在这些细化和量化的数据信息面前,科技期刊的优劣势一目了然。这必将造成优秀期刊的良性发展和劣质期刊的自我淘汰。这种数据公开机制,有可能导致某些优质期刊或优势学科领域的期刊获得更多的读者和作者资源,而对于新创办的期刊和某些弱势学科领域的期刊将进入一个更为不利的生存态势之中。

2.对科技期刊编辑人才队伍提出了新的要求。随着大数据理念深入人心,大数据技术的日臻成熟,数字化出版必将成为科技期刊的主要出版形式[9]。因此,数字化编辑也将成为科技期刊编辑工作者的新要求。编辑工作者不仅应具备组稿策划、文字编辑加工能力外,还应具备内容扩展、内容研究、内容创作等能力,以适应科技期刊在大数据时代下的数字化发展。

3.传统的盈利模式不再满足期刊的发展需求。在科技期刊数字化进程中,科技期刊文章无偿向全社会提供阅读已成为必然趋势。因此,依靠纸质发行、有偿下载阅读的传统盈利模式,已不能满足期刊的发展要求。然而,在将来期刊出版社或编辑部是否能成为数据运营的主体,也是一个悬而未决的问题。数据库运营商有可能通过与科技期刊共同建立和运行数字化出版平台,或开发数字化产品,来分享杂志的发行和广告收入。

由此可见,在大数据时代背景下,科技期刊将面临前所未有的机遇和挑战。作为科技期刊的从业者,我们要抓住这些机遇,迎接挑战,完成科技期刊的完美转型,尽早实现真正意义上的数字化期刊集群化。

参考文献:

[1] 丁田.大数据时代科技期刊的未来形态[J].中国科技期刊研究,2014(2).

[2] 贾晓青,王萍,陈清莲.大数据时代科技期刊编辑思维拓展[J].出版科学,2014(6).

[3] 张小强,张苹,吕赛英.从信息传播角度看科技期刊编辑出版过程及其优化[J].编辑学报,2007(3).

[4] 朱剑.量化指标:学术期刊不能承受之轻――评《全国报纸期刊出版质量综合评估指标体系(试行)》[J].清华大学学报(哲学社会科学版),2013(1).

[5] 柴英,马婧.大数据时代学术期刊功能的变革[J].编辑之友,2014(6).

[6] 张勤.试论大数据时代版权资源的价值重塑[J].中国出版, 2015(11).

篇(8)

1.1大数据系统中网络问题层出不穷

大数据背景下,人们的工作、生活及学习模式发生了很大改变,但人们的网络安全意识有待提高。在人们迫切追求在网络环境中的便捷性体验时,只要忽视了网络安全隐患,就必然会导致大数据系统安全问题层出不穷。在计算机系统配置中,网络软件安全性整体偏低,导致人们的重要信息很容易受到攻击而导致泄露。黑客与病毒的入侵,也恶化了大数据系统中的网络环境。当软件和程序存有漏洞,就很容易遭到病毒入侵。一旦大数据系统网络监管力度不够,网络环境的安全性就更难以保障,导致大数据系统中网络问题接二连三地出现。

1.2计算机网络安全为大数据系统安全提供了无限可能

计算机网络安全,可有效保证大数据系统的稳定安全运行。大数据主要是信息技术下的一种产物,通过储存和处理信息,在大数据系统中俺找人的需求呈现信息,进而为个人与企业发展提供数据依据。在大数据系统中,信息数据是其运行的根本因素,同时信息安全也是计算机网络安全的主要内容,可以说,计算机网络安全是大数据系统安全运行的根基。对计算机用户来说,大数据通过收集个人信息并分析,依据人的喜好来推送相关的数据。一旦这些涉及用户隐私的数据被不法分子非法使用,必然会威胁到计算机用户的根本利益。对企业来说,通过收集企业各项数据并为企业发展提供数据支持,这些数据不免涉及企业的核心机密与市场竞争力,一旦这些数据泄密,必然会对企业造成致命性打击。所以,计算机网络安全,在很大程度上保证了大数据系统安全,对企业与计算机用户信息安全都有着全面保障作用。

2计算机网络安全在大数据系统中的具体应用及改进策略

2.1计算机网络安全在大数据系统中的具体应用

一般来说,计算机网络安全在大数据系统中的应用,应充分认识到大数据系统运行中面临的各种网络安全问题。从预防与解决网络安全问题的角度实现大数据系统的安全运行。确切来说,计算机网络安全在大数据系统中的具体应用,可从数据管理、数据分析、防火墙应用及区块链防篡改技术等说起。计算机网络安全在数据管理中的应用:计算机网络安全在数据管理中的应用,主要是确保数据的完整性与安全性,避免出现数据被黑客与病毒入侵而面临着各种威胁。如在大数据系统中对用户身份进行认证,其数据信息管理时,以设定好的网络ID为主,只要登录时进行网络ID认定,就能避免网络ID被不法分子登录,也杜绝了不法分子毁坏数据及盗取数据的行为。大数据系统中身份认证过程中,以密码和特殊口令的方式来认证,就大大地提高了数据管理的安全性。身份认证技术应用时,能对需要处理的信息加密,当信息一旦被盗用,也无法正确认证身份而使用信息。计算机网络安全在数据管理中的应用,只要面临着黑客攻击,就能全面分析黑客攻击的手段,并充分运用数据信息抵御黑客攻击,全面保护大数据系统中网络环境的安全。计算机网络安全在数据分析中的应用:计算机网络安全可用在数据分析中,用来保护大数据系统的安全性。数据分析通过运用统计手段整合和处理数据,进而提取到有效的数据,在分析和整理后得到相关的结论。大数据系统中,数据分析用以保证数据的安全和完整,并确保数据的可靠性。计算机网络安全技术在数据分析中的应用,在很大程度上提升了数据分析的效率与质量,额保证了数据的准确性。数据分析中应用计算机网络安全技术,应加强大数据系统中的网络安全监管,积极地运用数据挖掘安全技术,全面分析用户日常行为,及时地跟踪和警告可能产生安全风险的操作,并告知用户。防火墙技术、区块链防篡改技术在大数据系统中的应用:计算机网络安全技术在大数据系统中的应用,通过运用防火墙技术和区块链防篡改技术,提高大数据系统网络安全的强度。计算机网络安全的基本保障来源于防火墙技术,几乎每一台计算机都配备了防火墙。计算机网络安全在大数据系统中的应用,通过为计算机网络提供安全保护,把计算机和计算机外网分离开来,分别分析计算机外网传达到计算机本身的相关信息,只要鉴别并确认后,对其进行拦截或者是放行。防火墙技术用于大数据系统中,可起到对病毒隔绝作用。区块链防篡改技术的应用,通过在每个新区块上设置数据指纹,并让每一个区块之间形成一种链条结构,只要区块中的数据被篡改,就会导致下一区块的数据指纹变动,这就无法完成用户身份认证,进而确保数据信息的完整性与保密性。

2.2计算机网络安全在大数据系统中应用的改进策略

篇(9)

2014年8月18日,中央全面深化改革领导小组第四次会议审议通过了《关于推动传统媒体和新兴媒体融合发展的指导意见》,对新形势下如何推动媒体融合发展提出了明确要求,强调要“推动媒体融合发展,强化互联网思维,将技术建设和内容建设摆在同等重要的位置,积极运用大数据、云计算等新技术,发展移动客户端、手机网站等新应用新业态,不断提高技术研发水平,以新技术引领媒体融合发展、驱动媒体转型升级。” 从西方到东方,从硅谷到北京,大数据的概念正被不断地传播与推广,大数据无疑已成为新技术与和产业聚焦的热点。因此,顺应时代形式、力求创新发展无疑是科技期刊的必行之路,以大数据等新兴技术为契机,加快推进科技期刊数字化建设乃是大势所趋。

1 大数据与数字化出版

1.1 大数据

1.1.1 大数据的发展历程

“大数据”一词首次被提出是在2011年有关机构的研究报告――《大数据:创新、竞争和生产力的下一个新领驭》之中。这份报告研究了数据和文档的状态,同时分析了处理这些数据能够释放出的潜在价值。此后,IBM、甲骨文、EMC、SAP等全球IT巨头纷纷把长期部署的海量数据设备、数据分析、商务智能等硬件、软件与服务以“大数据”这一概念推向战略前沿。大数据发展历程如表1所示。

1.1.2 大数据的涵义

大数据(Big Data)又称为巨量资料或海量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理并整理成为对企业经营决策具有较高参考价值的咨询。大数据具有4V特点,分别是海量化(Volume)、多样化(Variety)、快速化(Velocity)、和价值化(Value)。这些特点预示着大数据将改变目前“IT”架构,将信息界变革的重点由“T(技术)”转向“I(信息)”,以形态多样且富有价值的数据为主体,借助一定的技术,分析得出大量额外的有价值信息和数据关系,帮助指导人们优化自身的决策和行为方式。

1.2 数字化出版

2010年新闻出版总署下发《关于加快我国数字出版产业发展的若干意见》,将数字化出版定义为:“利用数字技术进行内容编辑加工,并用网络传播数字内容产品的一种新型出版方式”。数字出版是一种全新的技术和文化形式,策划、组稿、审稿、编辑加工、出版、发行等各个环节都应在网上完成,是融语义信息、听觉信息、视觉信息、行为信息、符号信息于一体,突破时空、学科、语言的限制,将期刊带入一个超立体空间和多维的环境。数字出版包括了三层递进的含义,基本上反映了学术期刊数字化出版从低到高的演进过程,见图1。

2 大数据时代科技期刊面临的机遇与挑战

2.1 大数据时代科技期刊面临的机遇

2.1.1 有助于期刊出版模式多元

当前,虽然科技期刊数字出版已开发打造,但所提供的资源形态一般仅为文字或者图片,相对较为单一,同时也尚未建立资源之间的关联性。大数据环境下,科技期刊编辑可以通过对海量数据的搜寻与分析,聚合优质资源,并利用数字出版技术、信息技术、知识挖掘技术、大数据分析技术等,了解学术前沿情况,发现研究机构及相关作者的研究现状,进行更深层次的选题策划和组稿,并“协助”各类编辑软件对日常稿件进行筛选、选择审稿专家、、规范基本格式、校对等,快速完成资源的优化,为用户提供多维的资源服务。科技期刊将改变以往以书、文献等为单位的粗放型生产模式,转而强调科研全过程的发表,为作者提供深入的知识服务,实现科技期刊跨学科、跨行业、多角度应用以及多媒体展现。

2.1.2 有助于期刊品牌价值提升

基于大数据的信息分析能够成为科技期刊质量管理、规划和决策等提供对维度的支持,有助于科技期刊品牌价值的提升。要善于利用大数据的预测功能,科技期刊编辑根据对用户行为大数据的全面挖掘和分析,了解用户的关注点和知识需求,预测未来科技的发展趋势,展示学术前沿、热电等,为编辑筛选、评判稿件提供学术依据和技术职称,从而进行针对性约稿,开发学术前沿与热点的专栏等,解决科技期刊内容创新度不高的问题。同时大数据应用过程中,科技期刊编辑可以了解作者近期的研究方向,推测遇到的问题,实现数字期刊的精准推送,一方面提高期刊论文的引用率,一方面培养作者群,扩大期刊的流通范围,均有助于科技期刊品牌价值的提升。

科技论文出版周期长、流通环节不畅、时效性差等问题不仅广被诟病,更直接影响到科技成果的认定、传播和利用价值,以及科技期刊的学术影响力,利用大数据技术对科技期刊编辑工作流程的优化,可以显著提高工作效率,缩短论文的出版周期。大数据时代,作者、编辑、专家等的信息传输和决策行为均纳入了数字化管理轨道,并与中外公共文献数据库实现了链接与共享,这使期刊编辑中的数据互通共享、数据计算分析及数字化作业成为可能,将对优化科技期刊编辑的工作流程提供帮助。科技期刊编辑智能型办公系统将以多维度数据为基础,充分利用计算机网络和人工智能计算工具,以达到减少重复劳动和简单劳动,提升编辑质量与效率,缩短审稿周期,从而最终提高科技期刊的学术影响力。

2.2 大数据时代科技期刊面临的挑战

2.2.1 保密工作更加复杂

当前,科技期刊发展进入数字出版时期,期刊编辑出版的数字化程度日益提高,投稿、审稿均已实现网络化,开放存取平台(如万方、维普及中国知网期刊数据库)日益完善,覆盖的期刊种类日益增多,国际检索系统收纳的中国科技期刊类别也越来越多,同时,媒体融合态势明显,网络平台种类增加,普及到数据库、期刊网站、手机平台等,特别是数字优先出版模式的出现,更是加快了科技期刊的出版速度。在学术指标评价方面,论文作者的学术指标往往以文章公开发表数量、原创性以及是否被EI、SCI等检索为职称评定的关键指标,科技期刊则以期刊被引频次、影响因子、平均引文率、反应速率、期刊他引率、期刊被引半衰期等为指标,这些都是以科技期刊能够网络出版、具有强大的传播能力为前提的。这就直接导致期刊发稿时效加强,科学研究原创性成果上网周期缩短。如果存在科研机构作者保密意识不强,科研成果定密标准认知不一,科技期刊出版单位保密审查不严,即使单篇发表作品看似没有泄密,但在大数据分析技术下,泄密可能性将大幅增加。

2.2.2 期刊数字化建设水平较低

近年来我国科技期刊数字化出版虽然得到了飞速发展,但与国外同行业相比,我国科技期刊数字化出版产业仅处于初级发展阶段,相对落后的数字化建设水平阻碍了大数据在科技期刊业的应用。目前信息的主要传播方式为网络传播,加快推进科技期刊数字化建设将有效促进国内外用户的学术交流与合作,并通过积极向国外同行、国际重要检索机构进行推送,扩大期刊的国际影响力。然而目前,国内很多科技期刊编辑尚对数字技术认识不足,局限于现有的出版模式。同时,科技期刊编辑的数字技术水平也普遍较低,缺乏推进科技期刊数字化建设的自觉意识与主观愿望。

在大数据时代,科技期刊论文的发稿时效和稿件审稿编辑周期都将大大加快,对期刊编辑和身高专家提出了更高要求,有了更高的挑战。因此各个科技期刊编辑部不仅需要建立一支能适应新环境的具有高素质的编辑队伍,还需要一批乐于奉献的高水平审稿专家队伍,在新的大数据环境下,需要作者、编辑和审稿专家协同努力,以适应新的编辑环境。

3 大数据时代科技期刊生存与发展的对策

3.1 以发表优质稿件为宗旨,坚持推进期刊数字化建设

中国传统的科技期刊还处于数字化转型的关键时期,要想在内容、管理等方面实现数据化运作,首先必须彻底推进期刊数字化。科技期刊编辑应主动顺应这一潮流,并在自己的职责范围内推进期刊的数字化改革进程。期刊编辑出版工作者应该站在战略高度,认识到期刊的数字化转型是生产力发展的必然结果,是时展的必然趋势。科技期刊编辑要不断加强建设科技期刊数字化的自觉意识,主动寻找适应数字化出版需求的运营管理模式,从而为建设具有中国特色的数字化出版业做出贡献。但主动迎接大数据给予的发展契机的同时,科技期刊的定位应该是做优秀的内容提供商,因此,科技期刊编辑应认清并巩固自身的核心价值所在,坚持优质稿件的办刊理念。已经起步的数字型编辑普遍存在重技术、轻内容质量的问题。对于大数据的分析使用始终无法代替文化产业属于人的精神创造活动,编辑只有对文字内容资源,包括稿件的收集、编辑加工、知识体系的分类等进行整合和管理,坚守角色定位,专注内容质量和价值提升,大数据才能在科技期刊业得到科学利用和持久发展。

3.2 以保密管理为抓手,坚持贯彻期刊保密审查制度

一是,新闻出版行政管理部门要高度重视。依据《新闻从业人员职务行为信息管理办法》的原则和要求,加强期刊保密审查和监督工作,促使科技期刊出版单位落实保密制度和保密责任。二是,期刊出版单位要高度重视。要在日常管理中健全保密管理、严把保密审查、加强保密教育,通过物理隔离和定期检查等做好稿件各环节的管理,加强对编辑人员的保密警示教育,针对保密审查中发现问题的稿件,要禁止编辑或其他人员通过任何渠道获得或传播稿件。三是,期刊编辑人员要高度重视。编辑要从思想上树立会保密、善保密的坚实防线,应在日常业务中学习保密法律法规知识,牢固掌握保密的相关规定和业务技能,以强烈的责任意识和保密意识认真贯彻执行保密审查制度。

3.3 以传统编辑为基础,坚持提升编辑人员信息素养

首先,科技期刊编辑要搞好选题策划,除了通过参加会议与专家交流获得选题外,还要善于挖掘和借助行业创新库,实现信息的获取、存取、交换、传递和应用,运用技术手段挖掘优质作者、寻找创新点及热点等。其次,科技期刊编辑要搞好稿件审读。编辑虽然不能对工作中涉及的专业领域做深入研究,但应对相关学科、领域的热点问题以及今后的发展趋势具有较强的认知能力,科技期刊的编辑可以借助各类信息平台为专家提供辅助审读依据。如编辑可以根据期刊自身要求,将是否具有创新点作为投稿必要条件,并借助平台提取稿件的创新点。第三,科技期刊编辑要借助大数据平台搞好期刊营销。编辑要运用一定的计算机基础知识(包括数据库、网络、多媒体等计算机应用新技术)将出版物中的文字视为信息符号,将文章进行碎片化处理,得到文章的标题、摘要、创新点、关键词、主要内容、潜在用户等信息。期刊编辑按照不同终端用户需求对碎片进行打包和再加工,通过计算机技术完全能够针对不同用户的不同需求,完成对这些信息符号的不同处理,最后推送给各类终端用户群。

篇(10)

[4]Big data[EB/OL]..

[18]丁智,林治.MapRdeuce编程模型、方法及应用综述[J].电脑知识与技术,2014,10(30):70607064.

[19]江舢,金晶,刘鹏展,等.分布式海量数据批处理技术综述[Z].中国科技论文在线,2012.

[20]吴哲夫,肖鹰,张彤.大数据和云计算技术探析[J].互联网天地,2015(4):611.

上一篇: 党员先进事迹心得体会 下一篇: 文学英语论文
相关精选
相关期刊